
 
 
 
 
 

Regularization Parameter Tool 
 
 
 

Theoretical Aspects 
 
 

A Package for Comparing Regularization Parameter Rules and  
Solving Discrete Ill-Posed Problems by Tikhonov method 

 
 

Uno Hämarik, Reimo Palm, Toomas Raus 
 

 
 
 
 
 

The purpose of this package is to provide the user tools for comparing and 
analysis of different rules for choice of the regularization parameter if discrete ill-
posed problems are solved by Tikhonov method. The user can choose the problem 
from the set of test problems or to use the own problem. The user can choose certain 
version from many possibilities to generate the noise and to give information about 
the noise level. If no information about the noise level is given, the regularization 
parameter may be chosen by one of heuristic rules, otherwise many rules for 
parameter choice are available depending information about the noise level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2014 



 2 

 
 

Contents 
 
1. Discrete ill-posed problem. Tikhonov method .......................................................... 3 
2. Choice of the regularization parameter ...................................................................... 3 

2.1 Delta-rules ............................................................................................................ 4 
Discrepancy principle ............................................................................................ 4 
Modified discrepancy principle (Raus-Gfrerer rule) ............................................. 4 
Monotone error rule ............................................................................................... 5 
Monotone error rule with post-estimation ............................................................. 5 
Adjusted monotone error rule ................................................................................ 5 
Rule R1(k) (transformed discrepancy principle) ................................................... 5 
Balancing principle ................................................................................................ 6 
Rules R2 )1,2/1,2( === klq  and R2 )2,2/1,2( === klq  .............................. 6 

2.2. Heuristic rules ..................................................................................................... 7 
Quasi-optimality criterion ...................................................................................... 8 
Hanke-Raus rule..................................................................................................... 8 
L-curve and the Reginska’s rule ............................................................................ 8 
Modified Reginska’s rule ....................................................................................... 8 
Hybrid rule ............................................................................................................. 9 
Brezinski –Rodriguez-Seatzu rule ....................................................................... 10 
Residual method................................................................................................... 10 
Generalized maximum likelihood rule ................................................................. 11 
Generalized cross-validation rule ........................................................................ 11 
Robust generalized cross-validation .................................................................... 11 
Strong robust generalized cross-validation .......................................................... 11 
Modified generalized cross-validation ................................................................. 11 

2.3. Parameter choice rules which uses ................................................................... 12 
the adjusting mechanism of the hybrid rule ............................................................. 12 

Adjusting mechanism........................................................................................... 12 
Adjusted  ME rule (MEa) .................................................................................... 12 
Choice of the regularization parameter in case of approximately known noise 
level ...................................................................................................................... 13 
Choice of the regularization parameter in case of approximately known standard 
deviations ............................................................................................................. 13 

3. Noise generation ...................................................................................................... 14 
3.1. Noise in the right-hand side .............................................................................. 14 

Actual noise level ................................................................................................. 14 
Standard deviation of the noise ............................................................................ 15 

3.2. Noise in the matrix ............................................................................................ 15 
Actual noise level ................................................................................................. 15 
Standard deviation of the noise ............................................................................ 15 

4. Output ...................................................................................................................... 15 
4.1. The table of the results in the case of test problem if number of runs 1=K . .. 16 
4.2. The table of the results in the case of test problem if number of runs 1>K . .. 17 
4.3.  The table of the results in case the of unknown solution ................................. 18 

References .................................................................................................................... 19 



 3 

1. Discrete ill-posed problem. Tikhonov method 
 
We consider the solving of the discrete linear ill-posed problem  

nnRAfuA ×∈= 000 , ,                                              (1) 
where the matrix 0A  is of  ill-determined rank, i.e, the singular values of 0A  “cluster” 
at the origin. We assume that the equation (1) has unique solution *u . The typical 
examples of discrete ill-posed problems are systems of linear equations arising from 
the discretization of ill-posed problems, such as Fredholm integral equations of the 
first kind with a square integrable kernel 

( ) ( ) ( ) dtctfdssustK
b

a

≤≤=∫ ,, . 

Instead exact right-hand side vector nRf ∈0  typically only noisy right-hand side is 
available: nRff ∈+= ξξ ,0 . We consider also the case, where the matrix 0A  is 
given with errors: nnRAA *

0 , ∈+= ζζ . 
To compute stable solution of such system with noisy data we use Tikhonov method  

( ) fAAAIu TT 1−
+= αα , 

where 0>α  is the regularization parameter.  
 
 

2. Choice of the regularization parameter 
 
An important problem in applying the Tikhonov method is the proper choice of  the 
regularization parameter α . If α  is too small, the numerical implementation will be 
unstable and the approximation αu will be useless; if α  is too big, the approximation 

αu  will be too smooth.  
The rules for the choice of the regularization parameter can be classified into three 
groups according to the information they require: 

a) a priori rules 
b) a posteriori rules which use the information about noise level (in the following 

we call they delta-rules)  
c) heuristic rules. 

A priori rules use the noise level ηδ ,  and for accurate results also smoothness 
information about the solution is needed.  A  posteriori rules use in parameter choice 
the quantities which arise in computations. These rules do not need information about 
the smoothness of the solution. A posteriori rules are divided into two groups, where 
rules of the first group use the noise level information and the rules of the second 
group (heuristic rules) do not need this. Heuristic rules have the advantage that they 
do not need require any information about the solution or noise levels of the initial 
data. In Regularization Parameter Tool we consider the delta-rules and the heuristic 
rules for the parameter choice. 
In the following we consider the search of the proper regularization parameter on the 
sequence Mjjjj jq ααααα ≤== − ,..,,3,2,1,, 1 , where M´0 ,αα  and 10, << qq  are 
given constants. 
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2.1 Delta-rules 
 
To use the delta-rules for choosing regularization parameter, the upper bounds of the 
noise levels are needed:  

                                ηδ ≤−≤− 00 , AAff .                                  (2) 

Here we use the Euclidean norms ∑
=

==
n

i
ixxx

1

2
2

.  If  the inequalities (2) hold 

and the parameter ( )ηδαα ,=  is chosen by the delta-rules given below, then 
approximate solution converges to the exact solution *u of the equation (1) : 

( ) 0*, →− uu ηδα     ( )0,0 →→ ηδ . 
 
Delta-rules can be divided into two groups: unstable and stable delta-rules. The 
discrepancy principle, the modified discrepancy principle and the monotone error rule 
(and its different versions) are unstable rules in the sense that if the actual error of the 
right-hand side is only slightly larger than δb  ( 1≥b  - constant which is used in rule), 
then the error of the approximate solution may be arbitrarily large, regardless of the 
value of the ratio of the actual and supposed noise level.  For stable delta-rules (rule 
R1, balancing principle, rules R2) the convergence  

( ) 0* →− uu δα     ( )0→δ  
holds, if in the process 0→δ  the ratio of the actual and supposed error level is 
bounded:  cff ≤− δ0 .  Stable delta-rules can be used also in case if 

niff iii ,..,2,1,,0 =+= ξ  with 0=iEξ  and we know the upper bound of the variance 
2σ  of the noise: 22 σξ ≤iE . 

Discrepancy principle   
Discrepancy principle [35,33,21] is one of the oldest rules for the parameter choice. 
Here the regularization parameter is found as the largest parameter ( ) jαηδα =, , for 

which   
     ( )αα ηδ ubfAu +≤−  ,  10 =≥ bb .   

Note that in the case of noisy matrix the discrepancy principle was considered in 
[11,49],  other delta-rules in [41]. 
 

Modified discrepancy principle (Raus-Gfrerer rule)  
Modified discrepancy principle [36,8] is the delta-rule, which yields optimal 
convergence rates ( ) ( ) ( )( )1

*,
++=− ppOuu ηδηδα  under assumption 

( )( )2/
00*

pT AARu ∈  for all [ ]2,0∈p . We take for the regularization parameter the 

largest parameter ( ) jαηδα =, , for which   

     ( ) ( )ααα ηδ ubfAuB +≤−  ,  10 =≥ bb .   
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Here ( ) 2/1−
+= TAAIB ααα  and the norm ( )fAuB −αα  

can be computed by the 

formula ( ) 2/1
,2 , fAufAufAuB −−=− αααα  , where α,2u is the two-times iterated 

Tikhonov approximation  ( ) ( )fAuAAIu TT ++=
−

αα αα
1

,2 . 
 

Monotone error rule 
Monotone error (ME) rule was proposed in [46] . For the regularization parameter we 
choose the largest parameter ( ) jαηδα =, ,  for which 

( )
( )

( ) ( )α
α

αα

αα

αα ηδ ub
fAu

fAufAu

fAuB

fAuB
+≤

−

−−
=

−

−

,2

,2

2

2 ,
,  10 =≥ bb . 

 

Monotone error rule with post-estimation 
In the ME rule with post-estimation [15] we take for the regularization parameter 
( ) ( ) 10,,, <<= γηδγαηδα ME , where ( )ηδα ,ME  is chosen by the monotone error 

rule. The post-estimation is justified by the property ** uuuu
ME

−≤− αα  for 

MEαα > . We recommend to take 4.0=γ . 
 

Adjusted monotone error rule  
See Section 3.3 
 

Rule R1(k) (transformed discrepancy principle) 
Rule R1(k) [37,38] is the first stable parameter rule. Fix 0>k , Nk ∈2 . Denote   

21
αα α BAAD T−= . Fix 0>k : Nk ∈2 . For the regularization parameter we choose the 

largest parameter ( ) jαηδα =, ,  for which 

( ) ( )
1111 −−−−

+>−
jjjj

ubfAuBD k
αααα ηδ , 

( ) ( )
jjjj

ubfAuBD k
αααα ηδ +≤− . 

It is recommended to choose the constant b  near to the value   

( ) 2/3

2
3

0 232
3

++






= k

k

k
kb .  

The norm ( )fAuBD k −ααα  can be computed by the formula 
 

( )
( ) ( )

( ) ( ) ( ) ( )( )







∈−−

∈+−
=−

++
−

+

−−

NkfAuAAfAuAA

NkfAuAAA
fAuBD

k
kT

k
kTk

k
TkTk

k

if,,

2/1if,
2/1

,1,2

,2/1
2/1

αα

α

ααα

α

α

, 

where α,ku is the approximate solution in k -times iterated Tikhonov method  
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( ) ( ) kmfAuAAIu T
m

T
m ,..,2,1,1,

1
, =++= −

−

αα αα . 
The more detailed recommendations for numerical realization of many rules for 
choice of the regularization parameter are given in [40]. 
 

Balancing principle  
 
This rule has a different form in different papers  [2,28-32]. Here we consider the rule 
from [28-32]. For the regularization parameter we choose the largest parameter 
( ) jαηδα =, ,  for which 

               ( ) δ
α αα

b
q

uuq
jjj

≤
−

−
−

1
1   and ( ) δ

α αα
b

q

uuq
jjj

>
−

−
−−−

1
211

. 

It is recommended to choose the constant b  near to the value   
16

33
0 =b .  Note that 

the balancing principle can be considered as an discrete version of the rule R1 with 
2/1=k  (see [13]).  

 

Rules R2 )1,2/1,2( === klq  and R2 )2,2/1,2( === klq   
These rules are examples of the general family of rules [14]. The general rule is the 
following. Fix the parameters qlklq ≥≥≤≤ ,0,22/3 .  We choose the 
regularization as the largest parameter ( ) jαηδα =, ,  for which 

( )
( ) ( )

( )
δ

ακ
α

ααα

ααα
µ

b
fAuBD

fAuBD
klqd

qql

q
q

k

≤
−

−
=

−−

−

1
1

22

1

,,, . 

 

Here ( )
1

2/,1: 2

−
+−

=+= −

q
sqlkqA µαακ ,   





>
=

=
qlk
qlkif

s
/if,1
/,0 . 

If qlk = , then 0bb ≥ , where  

( )
( )

( )

( )1/1

2/3

2/3

2/3

2
3

0 2/3
2/3

2/32
3

−

+

+

+ 








+
+










+






=

q

lk

lk

k

k

lk
lk

k
kb

.
 

If  qlk >  then it is recommended to choose the constant b  near to the value 0b . 
Note that the general rule includes as special case the monotone error rule 

)0,2( === klq , the modified discrepancy principle )0,2/3( === klq  and Rule 
R1 ),2/3( klq == . 
For the Rule R2 )1,2/1,2( === klq   the function ( )klqd ,,,α  has the form 

( ) ( ) ( )
( )fAuBD

fAuBD
d

−

−
=

ααα

αααακα
22/1

2
2/51,2/1,2,  

and for the rule R2 )2,2/1,2( === klq   the function ( )klqd ,,,α  has the form 
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( ) ( )
( )
( )fAuBD

fAuBD
d

−

−
=

ααα

αααακα
22/1

22
2/92,2/1,2, . 

 
 Note that the stable delta-rules can be used in case of  known variance of the 
noise.  Let, for example, we know the upper bound 2σ  of the variance of the noise in 
the right-hand side: iii ff ξ+= ,0 ,  22 σξ ≤iE , ni ,...,2,1= , where  iξ  are 
independent normally distributed random variables with zero mean. Then for 
choosing the regularization parameter we can use some stable delta-rule (Rule R1, 
balancing principle or Rules R2 )1,2/1,2( === klq  , R2 )2,2/1,2( === klq ) 
where instead of δ  we use nσ . 
 

2.2. Heuristic rules 
 

If the noise level is unknown, then, as shown by Bakushinskii [1], no rule for 
choosing the regularization parameter can guarantee the convergence of the 
regularized solution to the exact one as 0→δ . 
In Regularization Parameter Tool we consider the heuristic parameter choice rules, 
which can be represented in the form  

                                            ( )αψα
ααα 0

minarg
≤≤

=
M

h     .                                       (3) 

For all heuristic rules considered below  there is the possibility to use the following 
modifications of the general rule (3). 
 
1. In [16] was mentioned that if the problem (1) has a unique solution, then the 
function ( )αψ of the Hanke-Raus rule converges to 0 as 0→α . The same holds for 
other functions ( )αψ  considered below. Therefore, in [34] was proposed to find the 
minimizer of ( )αψ  in the interval [ ]0min ,αλ , where minλ  is the minimal eigenvalue of 
the matrix AAT .  Taking into account that Mαα ≥ , we get    

{ }
( )αψα

ααλα 0min,max
minarg

≤≤
=

M

h  

2. The minimizing function has usually the property ( ) 0lim =
∞→

αψ
α

 and to use the 

heuristic rule in the form (3), we must carefully choose the proper 0α ; otherwise there 
may be possibility that 0αα =h  which is not good parameter choice usually. 
Therefore for all parameter choice rules considered below we consider the following 
general rule 

( ) ( )αψακα
ααα

µ

0

minarg
≤≤

=
M

h ,  

where ( ) AATαακ += 1  and 0>ρ  is the value, for which 
 

                             ( ) ( ) ∞<<=
∞→ 11 0,lim cfcαψακ µ

α
.                           (4) 
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Quasi-optimality criterion 
 

The quasi-optimality criterion [47,48,9] is one of the oldest parameter choice rules.  In  
case of the continuous version of the quasi-optimality criterion the function ( )αψ  has 
the form 

( ) ( ) ( )fAuAfAuBD
d
du T

Q −=−== −−
αααα

α αα
α

ααψ ,2
12/12/1

. 
We get the discrete version of the quasi-optimality criterion, if we use a difference 
quotient in place of the derivative: ( ) qQD uu αααψ −= . The parameter µ  in (4) is 
one. 

Hanke-Raus rule 
 
For the Hanke-Raus rule [16] the minimizing function is  

( ) ( ) ( ) 2/1
,2

2/12/1 , fAufAufAuBHR −−=−= −−
αααα αααψ  

and the parameter 2/1=µ . 
 

L-curve and the Reginska’s rule 
 
The L-curve rule was proposed by Hansen [17,19,20], see also [25]. The name of this 
method is justified by the fact that log-log parametric plot of ( )αα ufAu ,−  has for 
many problems a distinct L-shape and the „corner point“ of the L-curve defines a 
good value of the regularization parameter. There are several variants to choose the 
„corner point“ of the L-curve. In case of Reginska’s rule [44] we choose the „corner 
point“ as global minimizer of  the function  

( ) ,τ
αααψ ufAuR −=  

where 1=τ . In case of the generalized Reginska’s rule 1≥τ .  The parameter µ  in 
(4) has the form τµ =  . 
 

Modified Reginska’s rule 
 
Numerical experiments  show that the Reginska’s rule does not work well in case of 
smooth solution. Motivated by this, in [42] the modification of the Reginska’s rule 
was proposed.  The logic behind this rule is the following. For Tikhonov method we 
can present the minimizing function of the Reginska’s rule in the  form  

( )fAuDfAuufAu −−=− −
ααααα α 2/12/1 , 

where the operator TAAD 1−= αα .  We know that in Tikhonov method the 
corresponding delta-rules  

( ) 1, ≥+=− bubfAu αηδ ,  ( ) ( ) 0
2/1 , bbubfAuD ≥+=− ααα ηδ  are order-

optimal delta-rules not for the full range of the smoothness index p : if 

( )( )2/
00*

pT AARu ∈  and the parameter ( )ηδα ,  is chosen by these delta-rules, then 
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( ) ( ) 10,)1/(
* ≤<+≤− + pcuu ppηδδα . The idea of the modified Reginska’s rule is to 

use instead of the functions ( )fAuDfAu −− ααα
2/1,  the functions 

( ) ( )fAuBDfAuB −− ααααα
2/1, , which define the full-range order-optimal delta-

rules with conditions ( ) ( ) 1, ≥+=− bubbfAuB ααα ηδ ,  

( ) ( ) 0
2/1 , bbubfAuBD ≥+=− αααα ηδ .  Thus, in the case of modified Reginska’s 

rule the minimizing function has the form 
( ) ( ) ( )fAuBDfAuBMR −−= −

αααααααψ 2/12/1  

and the parameter 1=µ  in (4). Note that   ( ) ( ) ( )αψαψααψ HRQMR
2/1=  . 

 

Hybrid rule 
 
Theoretical [22-24] and experimental results show that for some problems Hanke-
Raus rule fails less frequently than the quasi-optimality criterion or the (modified) 
Reginska’s rule, but in most cases the average performance of the two last rules is 
much better. Main idea of the following algorithm is to use the functions of all three 
rules in one hybrid rule for getting the same stability as in HR-rule and the same 
accuracy as in the quasi-optimality criterion and in the (modified) Reginska’s rule.  
The hybrid rule was proposed in [42]. Another variant of the hybrid rule was given in 
[43].  
 
Denote  

{ }{ }Mj
j

jjM q αλααααα ,max,:min: min0 ≥==  , 

( )jQQ
jM

αψα κ
ααα

,
0

minarg:
≤≤

=   ,    ( ) ( ) ( )fAuBDQ −= −
ααακ αακαψ 2/12/1

, ,   

( )jHRHR
jM

αψα κ
ααα

,
0

minarg:
≤≤

=
 

( ) ( ) ( )fAuBHR −= −
αακ αακαψ 2/1

, , 
( )jMRMR

jM

αψα κ
ααα

,
0

minarg:
≤≤

=  , ( ) ( ) ( ) ( )fAuBDfAuBMR −−= −
ααααακ αακαψ 2/12/1

, , 





=
>

=
MMRQ

MMRMR
QMR ααα

ααα
α

if,
if,

: . 

Form the set of parameters A: 

A 

{ }
{ }
{ }








=>

>>

≥

=

MQMRQMRHR
k

QQHR

MQMRHRQMR
k

QQHR

HRQMRHR

i ααααααα

ααααααα

ααα

andf,,...,,

if,,,...,,

if,

)()1(

)()1( . 

 
Here ( ) )(2)1( ,..,, k

QQQ ααα  are the local minimum points of the quasi-optimality criterion 
function  ( )αψ κ,Q  between parameters  QMRα  and HRα :  

( )
QMR

k
QQQHR ααααα >>>>> )(2)1( ...   . 
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Let  { ∈= αα min:H  A ( ) }1,: CT HR ≤αα , where ( ) ( )2,
21

21,
αψ

αα
κ

αα

Q

uu
T

−
=   and 1C  is 

the fixed number from the interval [ ]50,20 . In case Mαλ <min  we take for the 
regularization parameter HH αα = . 
In case Mαλ ≥min  we take for the regularization parameter  

( )
( )




>
≤

=
2

2

,,
,,

CTif
CTif

HMH

HMM
H ααα

ααα
α , 

where [ ]5,22 ∈C .  In Regularization Parameter Tool the constants 1C  and 2C are 

fixed: 251 =C , 32 =C . Note that the function ( ) ( )2
21

21,
αψ

αα αα

Q

uu
T

−
=  characterizes 

the maximal possible error of the approximate solution 
1α

u with respect to *2
uu −α .   

Namely, the following error estimate holds   
( )( ) ( )221* ,1

1
αααα Φ+≤− Tuu , 

where the function ( ) ( ) ( ) ( )0
1

*
1 ffAAAIuAAI TTT −+++=Φ

−−
αααα  is an upper 

bound of the error of the approximate solution αu : 

( ) ( ) ( )0
1

*
1

* ffAAAIuAAIuu TTT −+++≤−
−−

αααα . 

 

Brezinski –Rodriguez-Seatzu rule  
 
In  [5,6]  the heuristic rule was proposed, where the minimizing function has the form 

( )
( ) ( )fAuD

fAu
fAuA

fAu
TBRS

−

−
=

−

−
= −

αα

α

α

α ααψ
2/1

2
2/1

2

. 

The parameter 2/1=µ  in (4).  
 
On presentation of the following rules we rely on the paper [3]. 

Residual method  
 
The residual method was proposed in [4]  for spectral cut-off regularization method.  
The minimizing function has the form  

( )
( ) ( )( ) 4/1

αα

ααψ
AKAKtrace

fAu
TRES

−
= ,  

where ( ) TT AAAIK 1−
+= αα  and ( ) ∑

=

=
n

i
ii

cCtrace
1

 for the matrix ( ) nxn
ij RcC ∈= . For 

the residual method 2/1=µ . 
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Generalized maximum likelihood rule  
 
The generalized maximum likelihood rule was proposed by Wahba [52]. The 
minimizing function has the form 

( )
( )[ ] ( )[ ] 11 /11

2
1

/1

2

detdet n
T

nGML
AAI

fAu

AKI

fAu
−+

−

+
+

−
=

−

−
=

α
ααψ α

α

α , 

 where ( )αAKIrankn −=1   and +det   is the product of the nonzero eigenvalues. The 
parameter 1=µ . 
 

Generalized cross-validation rule  
 
Generalized cross-validation (GCV) rule was proposed in [10,51]. The minimizing 
function has the form   

( )
( )( ) ( )( )211

2
1

21

2

−−

−

−
+

−
=

−

−
=

T
GCV

AAItracen

fAu

AKItracen

fAu

α
ααψ α

α

α  

and the parameter 1=µ  in (4). 
 

Robust generalized cross-validation  
 
Robust GCV rule has been developed in [26,45]. The minimizing function has the 
form 
 

( )
( )( )

( ) ( )( )( ) 10,1 21
21

2

<<−+
−

−
= −

−
γγγαψ α

α

α AKtracen
AKItracen

fAu
, 

where ( )1,0∈γ  is a robustness parameter . In [3] 1.0=γ  was used. The parameter 
1=µ .  

Strong robust generalized cross-validation 
 
Strong robust GCV rule was considered in [27]. The minimizing function has the 
form 

( )
( )( )

( ) ( )( )( )αα

α

α γγαψ KKtracen
AKItracen

fAu T1
21

2

1 −

−
−+

−

−
=  

where ( )1,0∈γ  is a robustness parameter . In [3] 95.0=γ  was used.  The parameter 
1=µ .  

Modified generalized cross-validation  
 
Modified GCV rule was considered in [7,50].  The minimizing function has the form  

( )
( )( )21

2

α

ααψ
cAKItracen

fAu

−

−
=

−
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with parameter 1>c . In [3] 3=c  was used. The parameter 1=µ . 
 
 

2.3. Parameter choice rules which uses 

the adjusting mechanism of the hybrid rule 
 
We can consider the heuristic hybrid rule as a two-stage rule. In the first stage we 
choose the parameter using the Hanke-Raus rule. In the second stage we adjust the 
selected parameter using local minimizers of the quasi-optimality criterion and the 
global minimizer of the modified Reginska’s rule. It turns out that such adjusting of 
previously chosen parameter is useful also in cases, if we have some information 
about the noise level of the data. 

Adjusting mechanism  
  
Let the parameter  ( )ηδα ,  be chosen according to some delta-rule. Then adjusting 
mechanism of the parameter ( )ηδα ,  is the following. 
Form the set of parameters A: 

A 

( ){ } ( )
( ){ } ( )
( ){ } ( )









=>

>>

≥

=

MQMRQMR
k

QQ

MQMRQMR
k

QQ

QMR

i αααηδαααηδα

ααηδααααηδα

ηδααηδα

and,f,,...,,,

,if,,,...,,,

,if,,

)()1(

)()1( . 

 
Here ( ) )(2)1( ,..,, k

QQQ ααα  are the local minimum points of the quasi-optimality criterion 
function  ( )αψ κ,Q  between parameters  QMRα  and ( )ηδα , :  

( ) ( )
QMR

k
QQQ ααααηδα >>>>> )(2)1( ...,   . 

Let  { ∈= αα min:adj  A ( )( ) }1,,: CT ≤ηδαα . In case Mαλ <min  we take for the 
regularization parameter ( ) ( )ηδαηδα ,, adjadj = . In case Mαλ ≥min  we take for the 
regularization parameter  

( )
( )( )

( ) ( )( )





>

≤
=

2

2

,,,,

,,,
,

CTif
CTif

adjMadj

adjMM
adj ηδααηδα

ηδααα
ηδα .     

 

Adjusted  ME rule (MEa)   
 
In case of this rule we choose at first the parameter ( )ηδα ,  using monotone error rule 
and adjust this parameter using adjusting mechanism. In Regularization Parameter 
Tool the constants 1C  and 2C  of the adjusting mechanism are fixed: 31 =C , 32 =C . 
Numerical results show that this rule works better than other delta-rules if noise ξ  in 
the right-hand side has the positive correlation or the Poisson distribution.  
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Choice of the regularization parameter in case of approximately known noise 
level 
 
The delta-rules works well in practice, if we have fairly accurate estimate of the noise 
level of the data.  In case of overestimating of the noise level the heuristic parameter 
choice rules works often better than delta-rules.  On the other hand, heuristic rules 
may fail for some problems.   Motivated by this, we present  (see [42])  the rule for 
the case if the noise level is known approximately.  
In the following we assume that we know some upper bounds 00 ,ηδ of the noise level: 

00 η≤− AA , 00 δ≤− ff , but probably the norms of noise are larger than 11,ηδ : 

0101 , ηηδδ ≤≤ .  Then for the regularization parameter we choose the parameter     
( ) ( ) ( ) ( ){ }{ }0000111100 ,,,min,,max,,, ηδαηδαηδαηδηδα adjMEeMEe= .         (5) 

Here the parameters ( )00 ,ηδαMEe  and ( )11 ,ηδαMEe  are the parameters which are 
chosen by post-estimated monotone error rule. If for Mαα ≥    

( )
( ) α

αα

αα ηδ u
fAuB

fAuB
112

2

+>
−

−
, 

then we take ( ) MMEe αηδα =11 , . The parameter ( )00 ,ηδα adj  in (5)  is the adjusted 
parameter of the parameter ( ) ( ){ }0000 ,,min, ηδααηδα MEHR= . In adjustment we use 

the constant 




















∆
∆

=
2

1

0
1 3,25minC ,   where 1,0,1 =+=∆ − jAfjjj ηδ  and the 

constant 32 =C .  
If  0000 , ηδ ≤−≤− AAff ,   then  this rule guarantees the convergence of the 
approximate solution, if 0, 00 →ηδ  and constconst ≤≤ 1010 , ηηδδ  in the process 

0, 00 →ηδ .  Numerical examples show that  if CC ≤≤ 1010 , ηηδδ , where 
constant C  is not very large (for example, 100=C ), then this rule gives on average 
better results than the  monotone error rule  

( )
( )

( )α
αα

αα uAAffb
fAuB

fAuB
002

2

−+−=
−

−
 

in case of exactly known noise levels if 001001 , ηηδδ ≤−≤≤−≤ AAff .   
 

Choice of the regularization parameter in case of approximately known standard 
deviations 
 
In the following we assume that we know some upper bounds 0,0 , ησσ of the standard 

deviations of the right-hand side and matrix noise : iii ff ξ+= ,0 ,  2
0

2 σξ ≤iE , 

ni ,...,2,1=   and ijijij aa ξ+= 0 ,  2
0,

2

ησξ ≤ijE , nji ,...,2,1, = .  Here 

( ) ( )0
0, ijij aAaA == .   We know also that probably these standard deviations are larger 
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than 1,1 , ησσ : 0,1,01 , ηη σσσσ ≤≤ .  Then for the regularization parameter we choose 
the parameter     
    ( ) ( ) ( ){ }1,01,11,10,0 ,,3/2,3/max,,, ηηηη σσασσασσσσα adjME nn= . 

Here the parameter ( )3/2,3/ 1,1 nnME ησσα  is the parameter which is chosen by  
the monotone error rule, chosen as largest α  for which 

( )
( )

3)2( 1,12

2

αη
αα

αα σσ unn
fAuB

fAuB
+≤

−

−
. 

If there is no Mαα ≤  for which this inequality holds, then we take 
( ) 03/2,3/ 1,1 =nnME ησσα . The parameter ( )0,0 , ησσα adj   is the adjusted 

parameter of the parameter ( ) ( ){ }nnRHR 0,020,0 6,3,min, ηη σσαασσα = .  Here the 

parameter ( )nnR 0,02 6,3 ησσα  is chosen by the rule R2 )1,2/1,2( === klq : 
 

( ) ( )
( )

( )αη
ααα

ααα σσακ unn
fAuBD

fAuBD
0,022/1

2
2/5 23 +≤

−

−
. 

In adjustment we use the constants 251 =C  and 32 =C . 
 

3. Noise generation 

3.1. Noise in the right-hand side 
 
To generate noise of the right-hand side one can set up actual noise level or standard 
deviation of the noise. In both cases there is possibility to set up absolute or relative 
value of the corresponding quantity.  

Actual noise level  
The noisy right-hand side is computed in the case of absolute noise  level absδ  by the 

formula ξξδ 1
0

−+= absff  and in the case of relative noise level relδ  by the formula  

ξξδ 1
00

−+= fff rel . Here the components iξ  of the vector nR∈ξ are random 
variables with chosen distribution. 
The components iξ  are computed by the formulas 

( ) 1
2/12

1 1 ερξ
−

−= , niiii ,...,3,2,1 =+= − ερξξ , 
where ( )1,1−∈ρ  is the correlation coefficient and  iε  are independent random 
variables with standard normal distribution, with uniform distribution [ ]1,1−U  or 
with Poisson distribution with parameter λ .  
In the case of normal distribution with outlier the components iξ  are computed by 
the formulas 







=+

≠=
=

± 0

0

,

,,...,3,2,1,

nind

nini

i

i
i ε

ε
ξ  
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where iε  are independent random variables with standard normal distribution. The 
numbers { }1,1−∈±d  and nnNn ≤≤∈ 00 1:  are chosen randomly.  In case of such 
distribution approximately half of the noise of the right-hand side is distributed 
randomly and the remaining noise is placed in a single component.   

Standard deviation of the noise 
The noisy right-hand side is computed  in the case of absolute standard deviation absσ  
by the formula  ξσ absff += 0  and in the case of relative standard deviation relσ  by 
the formula ξσ 00 fff rel+= . The components iξ  of the vector nR∈ξ  are 
computed by the formulas  

( ) 1
2/12

1 1 ερξ
−

−= , niiii ,...,3,2,1 =+= − ερξξ , 
where ( )1,1−∈ρ  is the correlation coefficient and  iε  are independent normally 
distributed random variables with zero mean and with the variance 21 ρ−  in the case 
of normal distribution or independent  random variables with uniform distribution  

( ) ( )[ ]22 13,13 ρρ −−−U  in the case of uniform distribution. 
 
 

3.2. Noise in the matrix 
 
To generate noisy matrix one can set up actual noise level or standard deviation of the 
noise. In both cases there is possibility to set up absolute or relative value of the 
corresponding quantity.  

Actual noise level  
The noisy matrix ( )ijaA =  is computed  by the formula ijijij caa ξ+= 0 , where 

( )0
0 ijaA =  and the components ijξ  are independent random variables with standard 

normal distribution or  with uniform distribution . The constant c  is chosen so that in 
the case of absolute noise level η=− 0AA  and in the case of relative noise level 

00 AAA η=− . 

Standard deviation of the noise 
The noisy matrix ( )ijaA =  is computed  by the formula ijijij aa ξση+= 0 , where 

( )0
0 ijaA =  and the components ijξ  are independent random variables with standard 

normal distribution or  with uniform distribution [ ]3,3−U  .  
 

4. Output 
 
The Regularization Parameter Tool gives for the output the table of results and for 
each run the graphs of the approximate solutions and the graph of functions use in 
rules.  If the exact solution is known, then the graph of the exact solution and the  
graph of approximate solution with the optimal parameter are presented.  The table of 
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results depends on the number of runs  (one run or more) and on that is the exact 
solution of the problem known or not.  
 

4.1. The table of the results in the case of test problem if number of runs 1=K . 
 
In the case of single run the table of results is the following  
 
 Rule 1 

 
Rule 2 Rule 3 

 
Rule 4 Rule 5 Optimal 

Parameter xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx 
Error xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx 
Relative error xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx 
Error ratio xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx  
Quasi ratio xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx  
 ( )α1T  xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx  

  ( )α2T  xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx  
Link to solution Link Link Link Link Link Link 
 
In the case of single run the regularization parameter, the error of the approximate 
solution *)( uu R −α , relative error of the approximate solution ( ) ** uuu R −α , the 

error ratio ( )( )RE α  and the quasi-error ratio ( )( )RQ α  are presented for each chosen 
rule.   For each problem we define the optimal regularization parameter  by  

*
0

minarg uu
j

jM

opt −=
≤≤

α
ααα

α , where *u  is the solution of  the equation 00 fuA = .  Then the 

accuracy of the chosen regularization parameter ( )Rα  by rule R is characterized by 
the error ratio  

( )( ) ( ) 1
*

* ≥
−

−
=

uu

uu
RE

opt

R

α

αα . 

and  by  the quasi-error ratio   

( )( ) ( )

( )j

R

jMj

uu
RQ

α
α

αααα

α

Ψ

−
=

≤≤ 0,

*

min
, 

where the function ( ) ( ) ( )*00
2/11

*
1 2 uAAffuAAI T −+−++=Ψ −−−

αααα  is an 

upper bound of error of the approximate solution: 

( ) ( )*00
2/11

*
1

* 2 uAAffuAAIuu T −+−++≤− −−−
αααα . 

 
The quantities  

( )( ) ( )

( )αψ
α αα

ααα
HR

R uu
RT

H

−
=

≤≤ 0

max1 , ( )( )
( )

( )

( )αψ
α αα

ααλα
HR

R uu
RT

HM

−
=

≤≤min,max2 max   characterize a 

posteriori error estimate for the approximate solution: 
 

( ) ( )( ) ( )( )( )( ) ( )ααα
αααα Ψ+≤−
≤≤ 0´

min,max1 21*
M

RTRTuu R . 
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The quantity ( )( )RT α1  will be large (for example ( )( ) 301 ≥RT α ) , if the parameter 
choice fails and the rule chooses too small parameter. 
In the column ’Optimal’ the optimal parameter and corresponding absolute and 
relative error of the approximate solution are presented. At the end of the table the 
links to the files of the approximate solution vectors are presented. 

 
 

4.2. The table of the results in the case of test problem if number of runs 1>K . 
 
In the case of multiple runs the table of results is the following  
 
Nr  Rule 1 

 
Rule 2 Rule 3 

 
Rule 4 Rule 5 Optimal 

1 Parameter xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx 
… Parameter xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx 
K Parameter xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx 
1 Error ratio xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx* 
… Error ratio xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx* 
K Error ratio xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx* 
Average error  xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx 
Avg rel error xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx 
Avg error ratio xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx  
Median error ratio xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx  
Max error ratio xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx  
Avg quasi ratio xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx  
Max quasi ratio xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx  

1 Link to 
solution Link Link Link Link Link Link 

… Link to 
solution Link Link Link Link Link Link 

K Link to 
solution Link Link Link Link Link Link 

 
 
For each run and for each selected rule the chosen regularization parameter and the 
error ratio ( )( )RE α  are presented.  In the column ‘Optimal’ the optimal parameter 
and corresponding absolute error of approximate solution are presented. 
 
For all runs the following aggregates are presented: 

1) Average error  of the approximate solution ( )∑
=

− −
K

i
R uuK i

1
*

1
α

 , where ( )Riα  

is the regularization parameter chosen by rule R  for run i ; 

2) Average relative error of the approximate solution   ( )( )∑
=

− −
K

i
R uuuK i

1
**

1
α

; 

3) Average error ratio ( )( )∑
=

−=
K

i

i
avg REKE

1

1 α  

4) Median error ratio  medE  
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5) Maximal error ratio ( )( )REE i

Ki
α

≤≤
=

1max max  

6)   Average quasi-error ratio  ( )( )∑
=

−=
K

i

i
avg RQKQ

1

1 α  

7) Maximal quasi-error ratio  ( )( )∑
=

−=
K

i

i RQKQ
1

1
max α . 

 

4.3.  The table of the results in case the of unknown solution 
 
In the case of unknown solution the table of results has the following form: 

 
 Rule 1 

 
Rule 2 Rule 3 

 
Rule 4 Rule 5 

Parameter xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx 
 ( )HT α1  xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx 

  ( )HT α2  xxx.xx xxx.xx xxx.xx xxx.xx xxx.xx 
Link to solution Link Link Link Link Link 

 
For each selected rule the chosen regularization parameter, the quantities ( )( )RT α1 ,  

( )( )RT α2  and the link to the file of the approximate solution vector are presented. 
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