Reqularization Parameter Tool

Theoretical Aspects

A Package for Comparing Regularization Parameter Rules and
Solving Discrete IlI-Posed Problems by Tikhonov method

Uno Hamarik, Reimo Palm, Toomas Raus

The purpose of this package is to provide the user tools for comparing and
analysis of different rules for choice of the regularization parameter if discrete ill-
posed problems are solved by Tikhonov method. The user can choose the problem
from the set of test problems or to use the own problem. The user can choose certain
version from many possibilities to generate the noise and to give information about
the noise level. If no information about the noise level is given, the regularization
parameter may be chosen by one of heuristic rules, otherwise many rules for
parameter choice are available depending information about the noise level.
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1. Discrete ill-posed problem. Tikhonov method

We consider the solving of the discrete linear ill-posed problem
Au=f,, A, eR™, 1)
where the matrix A, is of ill-determined rank, i.e, the singular values of A, “cluster”

at the origin. We assume that the equation (1) has unique solution u.. The typical

examples of discrete ill-posed problems are systems of linear equations arising from
the discretization of ill-posed problems, such as Fredholm integral equations of the
first kind with a square integrable kernel

[K(t sh(sks = 1) c<t<d.

Instead exact right-hand side vector f, € R" typically only noisy right-hand side is

available: f = f, +&, £ R". We consider also the case, where the matrix A, is

given with errors: A=A, +¢, £ eR™.

To compute stable solution of such system with noisy data we use Tikhonov method
u, =(al + ATAJTATE,

where « > 0 is the regularization parameter.

2. Choice of the reqularization parameter

An important problem in applying the Tikhonov method is the proper choice of the
regularization parameter « . If « is too small, the numerical implementation will be
unstable and the approximation u_will be useless; if « is too big, the approximation

u, will be too smooth.

The rules for the choice of the regularization parameter can be classified into three
groups according to the information they require:

a) apriorirules

b) a posteriori rules which use the information about noise level (in the following

we call they delta-rules)

¢) heuristic rules.
A priori rules use the noise level 6,7 and for accurate results also smoothness
information about the solution is needed. A posteriori rules use in parameter choice
the quantities which arise in computations. These rules do not need information about
the smoothness of the solution. A posteriori rules are divided into two groups, where
rules of the first group use the noise level information and the rules of the second
group (heuristic rules) do not need this. Heuristic rules have the advantage that they
do not need require any information about the solution or noise levels of the initial
data. In Regularization Parameter Tool we consider the delta-rules and the heuristic
rules for the parameter choice.
In the following we consider the search of the proper regularization parameter on the
sequence «;, a; =qa;,, j=123,,., a; <ay, Where a,,a, and ¢,0<q<1 are

given constants.



2.1 Delta-rules

To use the delta-rules for choosing regularization parameter, the upper bounds of the
noise levels are needed:

It -1l <5, [A- Al <n. @

Here we use the Euclidean norms |x| =||x|, = /Zn: x* . If the inequalities (2) hold
i=1

and the parameter « = a(5,77) is chosen by the delta-rules given below, then
approximate solution converges to the exact solution u. of the equation (1) :

-0 (§-0,7-0).

ua(&,n) — U

Delta-rules can be divided into two groups: unstable and stable delta-rules. The
discrepancy principle, the modified discrepancy principle and the monotone error rule
(and its different versions) are unstable rules in the sense that if the actual error of the
right-hand side is only slightly larger than bs (b >1 - constant which is used in rule),
then the error of the approximate solution may be arbitrarily large, regardless of the
value of the ratio of the actual and supposed noise level. For stable delta-rules (rule
R1, balancing principle, rules R2) the convergence

Uy U >0 (6 >0)
holds, if in the process 6 — 0 the ratio of the actual and supposed error level is
bounded:  ||f - f[/s<c. Stable delta-rules can be used also in case if
f =1, +&, 1=12,..,n with E& =0 and we know the upper bound of the variance

o of the noise: E[£]" < o?.

Discrepancy principle
Discrepancy principle [35,33,21] is one of the oldest rules for the parameter choice.
Here the regularization parameter is found as the largest parameter «(5,7)= a;, for

which

|Au, - f|<b(&+nfu,]), b>b, =1.
Note that in the case of noisy matrix the discrepancy principle was considered in
[11,49], other delta-rules in [41].

Modified discrepancy principle (Raus-Gfrerer rule)
Modified discrepancy principle [36,8] is the delta-rule, which yields optimal

= O((cS + 77)"/(‘”1)) under  assumption

convergence rates

ua(&,n) — U,
U. € R((AJAO)M) for all pe[0,2]. We take for the regularization parameter the
largest parameter o(5,77)=a;, for which

B, (Au, - £} <b(s +nu,[), b=b,=1.



Here B, =+/a(al + AAT )™ and the norm |B, (Au, — f)| can be computed by the
formula B, (Au, - f)|=(Au,, - f,Au, - f>1/2 , where u, , is the two-times iterated

Tikhonov approximation u,, = (al + AT A)_l (aua +A'f )

Monotone error rule
Monotone error (ME) rule was proposed in [46] . For the regularization parameter we
choose the largest parameter a(5,77)=c;, for which

B, (Au, - )" (Au,, - f,Au, - f) )
P R T I U

Monotone error rule with post-estimation

In the ME rule with post-estimation [15] we take for the regularization parameter
a(6,m)= yorye (5,17), 0<y <1, where a,(5,7) is chosen by the monotone error

rule. The post-estimation is justified by the property HuaME —U. for

<|u, -u.

a > o, . We recommend to take y =0.4.

Adjusted monotone error rule
See Section 3.3

Rule R1(k) (transformed discrepancy principle)
Rule R1(k) [37,38] is the first stable parameter rule. Fix k >0, 2k € N. Denote

D, =a*AA'B’.Fix k>0: 2k e N . For the regularization parameter we choose the

largest parameter a(5,77)=a;, for which
D¢ B 1(AuaH - fl‘ > b(5+ nu,, H)

bl 8.,
ot B, (Au,, 1] <bls+n)u, |)

It is recommended to choose the <constant b near to the value
3

() s
0~ 2 (k+3/2)k+3/2'

The norm |D}B, (Au, — )| can be computed by the formula

Uaj

-k
(24

(ATA) 2 AT (AU, ., - fj‘ if k+1/2eN

o

loie, (s, - 1) - .
a™ ((AAT ) (Au,.,, — £)(AAT ) (Au, .., - f))l JifkeN’
where u, , is the approximate solution in k -times iterated Tikhonov method



U, =(cd +ATA (o, + ATE) m=12,. k.

m,a
The more detailed recommendations for numerical realization of many rules for
choice of the regularization parameter are given in [40].

Balancing principle

This rule has a different form in different papers [2,28-32]. Here we consider the rule
from [28-32]. For the regularization parameter we choose the largest parameter
a(6,m)=«a,, for which

Jeia <bs and @Ay >bs.
(1-q) (1-q)
33

It is recommended to choose the constant b near to the value b, =5 Note that

u, —u

aj ajq

—-u

ajq aj_y

the balancing principle can be considered as an discrete version of the rule R1 with
k=1/2 (see [13]).

RulesR2 (g=2,1=1/2,k=1) and R2 (q=2,1=1/2,k =2)
These rules are examples of the general family of rules [14]. The general rule is the
following. Fix the parameters 3/2<q<2,1>0,k>1/qg. We choose the

regularization as the largest parameter a(é,n): a;, forwhich
w(a)'|

_kq-1+sq/2 . 0, if k=1/q
q-1 ' 1, if k>1/q

D“B, (Au, — f)”qq—l

d(e,q,1,k)= <bs.

D! B?(Au, — f)ﬂq11

Here x(a):=1+ 05||A||72 . u

If k=1/q, then b >b,, where

L k(1 372) 02 )
b =2
0 (2) ((k+3/2)k+3/2J[(k+3/2)k+3/2||J

If k>1/q then it is recommended to choose the constant b near to the value b, .
Note that the general rule includes as special case the monotone error rule
(q=2,1 =k =0), the modified discrepancy principle (q=3/2,1=k =0) and Rule
R1 (g=3/2,1 =Kk).

For the Rule R2(q =2,1 =1/2,k =1) the function d(a,q,1,k) has the form

5/2 ||Da Ba (Aua - fmz

|p¥?B2(Au, - 1)

and for the rule R2(q = 2,1 =1/2,k =2) the function d(a,q,1,k) has the form

d (a,2,1/ 2,1) = K(a)




D?B, (Au, - f)
D.*BZ(Au, - )|

d(,21/2,2)= (a)”’?

Note that the stable delta-rules can be used in case of known variance of the
noise. Let, for example, we know the upper bound o of the variance of the noise in

the right-hand side: f, = f; +&, E[&| <o? i=12..,n, where & are

independent normally distributed random variables with zero mean. Then for
choosing the regularization parameter we can use some stable delta-rule (Rule R1,
balancing principle or Rules R2(q=2,1=1/2,k=1) , R2 (q=2,1=1/2,k =2))

where instead of 5 we use o+/n.

2.2. Heuristic rules

If the noise level is unknown, then, as shown by Bakushinskii [1], no rule for
choosing the regularization parameter can guarantee the convergence of the
regularized solution to the exact oneas 6 — 0.

In Regularization Parameter Tool we consider the heuristic parameter choice rules,
which can be represented in the form

a, =argminy(a) . 3)
ay <asag

For all heuristic rules considered below there is the possibility to use the following
modifications of the general rule (3).

1. In [16] was mentioned that if the problem (1) has a unique solution, then the
function w(a)of the Hanke-Raus rule converges to 0 as a — 0. The same holds for

other functions ://(a) considered below. Therefore, in [34] was proposed to find the
minimizer of y(a) in the interval [A_,,,a,], where A4_, is the minimal eigenvalue of

min ! n

the matrix AT A. Taking into account that « > «,, , we get
a,= argmin  w(a)

max{ay ,Amin <@ <aq

2. The minimizing function has usually the property lim y/(a)=o and to use the

heuristic rule in the form (3), we must carefully choose the proper «,; otherwise there
may be possibility that «, =, which is not good parameter choice usually.

Therefore for all parameter choice rules considered below we consider the following
general rule

a, =argminx(a)’ w(a),

ay <asa

where x(a)=1+ a/HAT AH and p >0 is the value, for which
lim (e ) w(a)=c,|f], 0<c, <. (4)



Quasi-optimality criterion

The quasi-optimality criterion [47,48,9] is one of the oldest parameter choice rules. In
case of the continuous version of the quasi-optimality criterion the function l//(a) has
the form

a

du
‘//Q(a)_ a da

-1/2

D), (Au, - f)| =a*|AT(Au,, - )|

We get the discrete version of the quasi-optimality criterion, if we use a difference
quotient in place of the derivative: (a): u . The parameter 4 in (4) is

a uaq
one.

Hanke-Raus rule

For the Hanke-Raus rule [16] the minimizing function is
vl =a 7B, (AU, ~ )] =a?(Au,,, - £, Au, ~ 1}
and the parameter 4 =1/2.

L-curve and the Reginska’s rule

The L-curve rule was proposed by Hansen [17,19,20], see also [25]. The name of this
method is justified by the fact that log-log parametric plot of (“Aua - f||||ua||) has for
many problems a distinct L-shape and the ,,corner point“ of the L-curve defines a
good value of the regularization parameter. There are several variants to choose the

»corner point“ of the L-curve. In case of Reginska’s rule [44] we choose the ,,corner
point* as global minimizer of the function

WR (a): ||Aua - f ||ua
where 7 =1. In case of the generalized Reginska’s rule 7 >1. The parameter x in
(4) has the form =17 .

T
1

Modified Reginska’s rule

Numerical experiments show that the Reginska’s rule does not work well in case of
smooth solution. Motivated by this, in [42] the modification of the Reginska’s rule
was proposed. The logic behind this rule is the following. For Tikhonov method we
can present the minimizing function of the Reginska’s rule in the form

|Au, = fu,|=a™?|Au, - f||H5;’2(Aua - f)”
where the operator D, =« "AAT. We know that in Tikhonov method the
corresponding delta-rules
|Au- | =b(s+nlu,[} b=1,  [DY*(Au, - ) =b(5+nlu,[) b=b, are order-
optimal delta-rules not for the full range of the smoothness index p: if
U. € R((AJAO)D/Z) and the parameter «(d,7) is chosen by these delta-rules, then



U, —ue < c(5+7)""?, 0< p<1. The idea of the modified Reginska’s rule is to

use instead of the functions |
IB, (A B, (Au, - fj‘ which define the full-range order-optimal delta-
rules with conditions B, (Au, — )] =bb(s +7u,[) b>1,
DY?B_(Au, - f)” =b(&+7]u, [l b=b,. Thus, in the case of modified Reginska’s

rule the minimizing function has the form
(@)= ™?[B,(Au, - fJ|DY?B,(Au, - T)

and the parameter z =1 in (4). Note that z//MR( )=y (el r(@) .

a—fj‘ the  functions

Hybrid rule

Theoretical [22-24] and experimental results show that for some problems Hanke-
Raus rule fails less frequently than the quasi-optimality criterion or the (modified)
Reginska’s rule, but in most cases the average performance of the two last rules is
much better. Main idea of the following algorithm is to use the functions of all three
rules in one hybrid rule for getting the same stability as in HR-rule and the same
accuracy as in the quasi-optimality criterion and in the (modified) Reginska’s rule.
The hybrid rule was proposed in [42]. Another variant of the hybrid rule was given in
[43].

Denote
ay = min{aj ra; =a,q’, a; = max{A, ., a, }}‘ ,

@, =argminy, (a;) , WQYK(a)zzc(a)a*m DY?B,(Au, - f)”

aysaj<ag
. . -1/2
hr = argminy . I((aj) l//HRK =AK 0( ”B Au, — f]|
ay <aj<ay y
. H -1/2 1/2
Ayg = argminy g K(aj) ‘//MRK K(a)a "Ba( mD (AU, — fX‘
ay <ajsa ’
_—— ey 1f g >y
QMR P —_— - — _ —_—
ay,, fag=a
Form the set of parameters &
{EHR } If aQMR 2 67HR
A =000 a8 T ) T T > T > @,
HR1UQ 1 Q '“omRr HR QMR M
{aHR,aS), aék) } if g >agugand agyg =ay

o @)
Here g ,0q

function y/Q'K(a) between parameters @, and o :

() () K o
aHR>aQ >ay > >0y > Oour -

aly? are the local minimum points of the quasi-optimality criterion



_ Ju., -u..
Let &, =min{a € ¢#:T(a, &, )<C,}, where T(e,,a,) = "——21
l//Q,K'(aZ)
the fixed number from the interval [20,50]. In case A, < «,, we take for the
regularization parameter «,, =, .
In case A, > a,, We take for the regularization parameter
a,, if T(a,,a,)<C,
oy =4_ . o ,
a,, if T(ay,a,)>C,

where C, €[2,5]. In Regularization Parameter Tool the constants C, and C,are

and C, is

27} uaz

Vo (az)
the maximal possible error of the approximate solution u,, with respect to Hua2 —Uf.

fixed: C, = 25, C, = 3. Note that the function T(a,,a,)= characterizes

Namely, the following error estimate holds
Hua1 —U. = (1+T(a1’0‘2 ))CD(O‘Z )’
et + ATAS AT (T - 1,

where the function ®(a)= Ha(al +ATA)

is an upper
bound of the error of the approximate solution u,,:

lu, —u. +|la+ ATAS AT (1 - 1,)

<Jaledt + A A) .

Brezinski —Rodriguez-Seatzu rule

In [5,6] the heuristic rule was proposed, where the minimizing function has the form
R [P S P |
A DY(Au, - )

-1/2
AT (Au, - T) |
The parameter ¢ =1/2 in (4).

On presentation of the following rules we rely on the paper [3].

Residual method

The residual method was proposed in [4] for spectral cut-off regularization method.
The minimizing function has the form

¥ res (0()= ”AUa _ f” ,
(trace(AKa ) (AK,, ))“4

where K, = (al + ATA)" AT and trace(C)= zn:c" for the matrix C = (¢, )e R™. For
i=1

the residual method 4 =1/2.

10



Generalized maximum likelihood rule

The generalized maximum likelihood rule was proposed by Wahba [52]. The
minimizing function has the form

Au — f° Au — f°
vonle) L A Y

+ Iny 4 !
det” (1 - AK,,)f et (e + AT )|
where n, =rank(l - AK_) and det® is the product of the nonzero eigenvalues. The
parameter s =1.

-1

Generalized cross-validation rule

Generalized cross-validation (GCV) rule was proposed in [10,51]. The minimizing
function has the form

Au — f|f Au — f|f
RV [ P VP

(ntrace() - AK, )f (n “trace(al + AAT ) )2
and the parameter ,, =1 in (4).

-1

Robust generalized cross-validation

Robust GCV rule has been developed in [26,45]. The minimizing function has the
form

Au, — f’
v (e)="— |Au. -] - (7/+ (1—;/)n’ltrace((AKa)2 )) 0<y<1,
(n*trace(l - AK,))
where y € (0,1) IS a robustness parameter . In [3] » = 0.1 was used. The parameter

on=1.

Strong robust generalized cross-validation

Strong robust GCV rule was considered in [27]. The minimizing function has the
form

[Au, — £
ntrace(l - AK, )
where y e (0,1) is a robustness parameter . In [3] y =0.95 was used. The parameter
u =1

y(a)= ( (7 + - y)n*trace((K 1K, ))

Modified generalized cross-validation

Modified GCV rule was considered in [7,50]. The minimizing function has the form
[Au, — f[°
n“trace(l - cAK, )

V/(a):(

11



with parameter ¢ >1. In [3] ¢ =3 was used. The parameter x=1.

2.3. Parameter choice rules which uses

the adjusting mechanism of the hybrid rule

We can consider the heuristic hybrid rule as a two-stage rule. In the first stage we
choose the parameter using the Hanke-Raus rule. In the second stage we adjust the
selected parameter using local minimizers of the quasi-optimality criterion and the
global minimizer of the modified Reginska’s rule. It turns out that such adjusting of
previously chosen parameter is useful also in cases, if we have some information
about the noise level of the data.

Adjusting mechanism

Let the parameter a(&,n) be chosen according to some delta-rule. Then adjusting
mechanism of the parameter (&, 7) is the following.
Form the set of parameters &

{0(5,77)}, if Aour 2 a(5,77)
A= {a(&,n),ag),...,aék),ﬁQMR }, if a(5,7)>agwr > oy
{a(5,n), aél),...,aék) } if a(5,77)>§QMR and aoyr =y

Here al,a?,...a$ are the local minimum points of the quasi-optimality criterion
function v, () between parameters &, and a(d,7):

a(6,7)>afd >al) >..>ald) > gy -
Let o, =minjae & T(a,a(d,7)<C,}. In case A, <a, we take for the
regularization parameter o, (8,7)=a,;(5,7). In case A, >a, we take for the
regularization parameter

o (5,,7):{

ay, if T(O‘M » U (51’7))S C,
0_5adj(5177)’ if T(“M o (5177))>Cz .

Adjusted ME rule (MEa)

In case of this rule we choose at first the parameter «(J,7) using monotone error rule
and adjust this parameter using adjusting mechanism. In Regularization Parameter
Tool the constants C, and C, of the adjusting mechanism are fixed: C, =3, C, =3.
Numerical results show that this rule works better than other delta-rules if noise £ in
the right-hand side has the positive correlation or the Poisson distribution.

12



Choice of the reqularization parameter in case of approximately known noise
level

The delta-rules works well in practice, if we have fairly accurate estimate of the noise
level of the data. In case of overestimating of the noise level the heuristic parameter
choice rules works often better than delta-rules. On the other hand, heuristic rules
may fail for some problems. Motivated by this, we present (see [42]) the rule for
the case if the noise level is known approximately.

In the following we assume that we know some upper bounds &,,7, of the noise level:
|A= A <n,, ||f, — f[| <, but probably the norms of noise are larger than &,,7,:
0, < 6,, n, <n,. Then for the regularization parameter we choose the parameter
(80,110, 61,71,) = max{“MEe(51’U1)a min{aMEe(501770)’ Ao (501770)}}- (5)
Here the parameters a,,,(5,.77,) and a,,,(5,,7,) are the parameters which are
chosen by post-estimated monotone error rule. If for o > ¢,,
B, (Au, - 1)
B(Au, - f)
then we take a,,(5,,7,)=a,, . The parameter a,y(5,.7,) in (5) is the adjusted
parameter of the parameter a(8,,7, )= Min{@ s, aye (5,7, )}. In adjustment we use

>, +mu, |

2
the constant C, = min{ZS,S(%j } where A; =7, +77j||f||||A”‘1’ j=01 and the

1
constant C, =3.
If ||f —f| <&, |[A-A)|<m,, then this rule guarantees the convergence of the
approximate solution, if §,,77, > 0 and &,/8, <const, 7,/n, <const in the process

89,1y = 0. Numerical examples show that if &,/5,<C, n,/n, <C, where

constant C is not very large (for example, C =100), then this rule gives on average
better results than the monotone error rule

B, (Au, - 1)
=b(|f - f|+]A-
ety - A= Al

a

in case of exactly known noise levels if 5, <|f — ;| < 5,,m <|A- A <7n,.

Choice of the reqularization parameter in case of approximately known standard
deviations

In the following we assume that we know some upper bounds o, o, , of the standard
deviations of the right-hand side and matrix noise : f, = f,, +&, E|&[* <a?,

Ele;|  <o%, ij=12..n.  Here
A= (aij ) A = (a,‘}) We know also that probably these standard deviations are larger

i 0
1=12..,n and a; =a; +&,

13



than o,,0,,: 0, <0,,0,, <0o,,. Then for the regularization parameter we choose

the parameter

a(ao 1000 0'1,0',7'1): max{aME (\/ﬁal /3, 20‘,]’1\/3/3) A o (O‘O , aﬂyl)}.
Here the parameter o, (Jﬁal/3, 20”11\/5/3) is the parameter which is chosen by
the monotone error rule, chosen as largest « for which

Bolru =) o 2o Sl

BZ(Au, - f)
If thereisno a <, for which this inequality holds, then we take
e 04N 13, 20,,n/ 3)=0. The parameter l00:0,,) is the adjusted
parameter of the parameter 05(00’0,,,0)2 min{&HR,aR2(3\/ﬁao,60mo\/ﬁ)}. Here the
parameter aR2(3\/ﬁao,60,7'0\/ﬁ) is chosen by the rule R2(q =2,1 =1/2,k =1):

K(a)S/Z ||Da Ba (Aua - fmz
|p¥?B2(Au, - 1)

In adjustment we use the constants C, =25 and C, =3.

<3y +20, o nfu,[)

3. Noise generation

3.1. Noise in the right-hand side

To generate noise of the right-hand side one can set up actual noise level or standard
deviation of the noise. In both cases there is possibility to set up absolute or relative
value of the corresponding quantity.

Actual noise level
The noisy right-hand side is computed in the case of absolute noise level 6, by the

formula f = f, +8,,¢| ¢ and in the case of relative noise level &

f=f,+8,|f[|&] &. Here the components & of the vector & e R"are random

variables with chosen distribution.
The components &, are computed by the formulas

&= (1_/72)_1/251’ &=péyte,1=23..,n,
where pe(-11) is the correlation coefficient and &, are independent random
variables with standard normal distribution, with uniform distribution U[-11] or
with Poisson distribution with parameter 1.
In the case of normal distribution with outlier the components & are computed by
the formulas

by the formula

rel

: g, 1=123..,n i#n,
- g +d,/n, i=n,
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where ¢, are independent random variables with standard normal distribution. The
numbers d, e {~11} and n, e N:1<n, <n are chosen randomly. In case of such

distribution approximately half of the noise of the right-hand side is distributed
randomly and the remaining noise is placed in a single component.

Standard deviation of the noise
The noisy right-hand side is computed in the case of absolute standard deviation o,
by the formula f = f, + o, £ and in the case of relative standard deviation o, by

abs

the formula f =f,+o,[f,|¢. The components & of the vector &eR" are
computed by the formulas
-1/2 f
'):1:(1_/02) &, & =p&i,y+e,1=23,..,n,
where pe(-11) is the correlation coefficient and & are independent normally

distributed random variables with zero mean and with the variance 1— p? in the case
of normal distribution or independent random variables with uniform distribution

U l— Jalt-p?),4/3- pZ)J in the case of uniform distribution.

3.2. Noise in the matrix

To generate noisy matrix one can set up actual noise level or standard deviation of the
noise. In both cases there is possibility to set up absolute or relative value of the
corresponding quantity.

Actual noise level

The noisy matrix A=(a;) is computed by the formula a; =al +c&;, where

ij 1
A, :(ai‘j)) and the components &; are independent random variables with standard

normal distribution or with uniform distribution . The constant ¢ is chosen so that in
the case of absolute noise level |[A—Aj|=7 and in the case of relative noise level

[A= A =nlAd.

Standard deviation of the noise

The noisy matrix A:(aij) is computed by the formula a; :a§+0”§ where

ij?
A, :(ai‘j’) and the components &; are independent random variables with standard
normal distribution or with uniform distribution U l— 3, \/§J .

4. OQutput

The Regularization Parameter Tool gives for the output the table of results and for
each run the graphs of the approximate solutions and the graph of functions use in
rules. If the exact solution is known, then the graph of the exact solution and the
graph of approximate solution with the optimal parameter are presented. The table of

15



results depends on the number of runs (one run or more) and on that is the exact
solution of the problem known or not.

4.1. The table of the results in the case of test problem if number of runs K =1.

In the case of single run the table of results is the following

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Optimal

Parameter XXX XX | XXX XX | XXX XX | XXX.XX XXX XX XXX. XX
Error XXXXX | XXX XX | XXX XX | XXX.XX XXX. XX XXX. XX
Relative error | XXX.XX [ XXX.XX | XXX XX | XXX.XX XXX XX XXX. XX
Error ratio XXX XX | XXX XX | XXX XX | XXX.XX XXX XX
Quasi ratio XXXXX | XXX XX | XXX.XX | XXX.XX XXX. XX

T 1(a) XXX XX | XXX XX [ XXX XX | XXX.XX XXX. XX

T z(a) XXX XX | XXX XX [ XXX XX | XXX.XX XXX. XX
Link to solution Link Link Link Link Link Link

In the case of single run the regularization parameter, the error of the approximate
solution , relative error of the approximate solution /u* , the

error ratio E(a(R)) and the quasi-error ratio Q(a(R)) are presented for each chosen
rule. For each problem we define the optimal regularization parameter by

, Where u. is the solution of the equation Aju = f,. Then the

Us(r) —Ux Ua(r) ~ U

Oy = argmin

ay <aj<ag
accuracy of the chosen regularization parameter a(R) by rule R is characterized by
the error ratio

u, —U.

E(a(R)) = @ "2l 5 q
oy~ U-
and by the quasi-error ratio
B Ua(R) —U.
Qa(R))= - min_ ¥(e,)
where the function ¥(a) = Ha(al +ATAS W[+ 28 M3 (| F - o+ A= Affu.]) is an

upper bound of error of the approximate solution:
<Jaled + ATA) w200 (|1 - ]+ A= A

).

lu, —u.

U*

The quantities

_ U —U, | — U, —U
T,(2(R))= max —H “® =l T(a(R)=  max —H «(®) “H

ay<asay W o (a) max(ay Amin <@ <ay ViR (a)
posteriori error estimate for the approximate solution:

characterize a

< 1+ max(T,(«(R)) T, (a(R)))) min ¥(a).

oy <asa,

Ua(R) - U*
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The quantity T,(a(R)) will be large (for example T,(«(R))>30) , if the parameter
choice fails and the rule chooses too small parameter.

In the column ’Optimal’ the optimal parameter and corresponding absolute and
relative error of the approximate solution are presented. At the end of the table the
links to the files of the approximate solution vectors are presented.

4.2. The table of the results in the case of test problem if number of runs K >1.

In the case of multiple runs the table of results is the following

Nr Rulel | Rule?2 Rule 3 Rule 4 Rule 5 Optimal
1 Parameter XXX XX | XXX.XX XXX. XX XXX. XX XXX. XX XXX. XX
. Parameter XXX XX | XXX.XX XXX. XX XXX.XX XXX. XX XXX.XX
K Parameter XXX XX | XXX.XX XXX XX | XXX.XX XXX XX | XXX.XX
1 Error ratio XXX XX | XXX.XX XXX. XX XXX. XX XXX. XX XXX XX*
. Error ratio XXX XX | XXX.XX XXX. XX XXX.XX XXX. XX XXX.XX*
K Error ratio XXX XX | XXX. XX XXX.XX XXX.XX XXX.XX XXX XX*
Average error XXX XX | XXX.XX XXX XX | XXX.XX XXX XX | XXX.XX
Avg rel error XXX XX | XXX.XX XXX XX | XXX.XX XXX XX | XXX.XX
Avg error ratio XXX XX | XXX. XX XXX. XX XXX.XX XXX. XX
Median error ratio XXX XX | XXX.XX XXX XX | XXX.XX XXX XX
Max error ratio XXX XX | XXX.XX XXX XX | XXX.XX XXX. XX
Avg quasi ratio XXX XX | XXX. XX XXX. XX XXX.XX XXX. XX
Max quasi ratio XXX XX | XXX.XX XXX XX | XXX.XX XXX. XX
p |Linkto Link | Link | Link | Link | Link | Link
solution
Link to Link | Link | Link | Link | Link | Link
solution
K |Linkto Link | Link | Link | Link | Link | Link
solution

For each run and for each selected rule the chosen regularization parameter and the
error ratio E(a(R)) are presented. In the column *Optimal’ the optimal parameter
and corresponding absolute error of approximate solution are presented.

For all runs the following aggregates are presented:

, where a'(R)

i)

K
1) Average error of the approximate solution K’lz Ui ()~ Us
i=1

is the regularization parameter chosen by rule R forrun i;

U*

K
2) Average relative error of the approximate solution K 1ZQ‘uai(R) —U.
i=1

K -

3) Average error ratio E,, =K™>’ E('(R))
i=1

4) Median error ratio E_,
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5) Maximal error ratio E,, = maxE(a'(R))

6) Average quasi-error ratio Q,, = K’le

1<i<K

K

i=1

i=1

(@' (R)

7) Maximal quasi-error ratio Q,,, =K™)’ (@' (R)).

4.3. The table of the results in case the of unknown solution

In the case of unknown solution the table of results has the following form:

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5

Parameter XXX. XX XXX XX XXX XX XXX. XX XXX. XX

T 1(0!H ) XXX. XX XXX. XX XXX. XX XXX. XX XXX. XX

T Z(OKH ) XXX. XX XXX. XX XXX. XX XXX. XX XXX. XX
Link to solution Link Link Link Link Link

For each selected rule the chosen regularization parameter, the quantities T,(a(R)),

T,(a(R)) and the link to the file of the approximate solution vector are presented.
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