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Abstract We consider choice of the regularization parameter in Tikhonov method
in the case of the unknown noise level of the data. From known heuristic parameter
choice rules often the best results were obtained in the quasi-optimality criterion
where the parameter is chosen as the global minimizer of the quasi-optimality func-
tion. In some problems this rule fails, the error of the Tikhonov approximation is
very large. We prove, that one of the local minimizers of the quasi-optimality func-
tion is always a good regularization parameter. We propose some algorithms for
finding a proper local minimizer of the quasi-optimality function.

1 Introduction

Let A ∈L (H,F) be a linear bounded operator between real Hilbert spaces. We are
interested in finding the minimum norm solution u∗ of the equation

Au = f∗, f∗ ∈R(A). (1)

The range R(A) may be non-closed and the kernel N (A) may be non-trivial, so in
general this problem is ill-posed. As usually in treatment of ill-posed problems, we
assume that instead of exact data f∗ noisy data f ∈ F are given. For the solution of
the problem Au = f we consider Tikhonov method (see [6, 36]) where regularized
solutions in cases of exact and inexact data have corresponding forms

u+α = (αI +A∗A)−1 A∗ f∗, uα = (αI +A∗A)−1 A∗ f

and α > 0 is the regularization parameter.
Denote

e1(α) :=
∥∥u+α −u∗

∥∥+∥∥uα −u+α
∥∥ . (2)
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Due to the well-known estimate ‖uα −u+α ‖≤ 1
2 α−1/2 ‖ f − f∗‖ (see [6, 36]) the error

‖uα −u∗‖ can be estimated by

‖uα −u∗‖ ≤ e1(α)≤ e2(α,‖ f − f∗‖) :=
∥∥u+α −u∗

∥∥+ 1
2
√

α
‖ f − f∗‖ . (3)

We consider choice of the regularization parameter if the noise level for ‖ f − f∗‖ is
unknown. The parameter choice rules which do not use the noise level information
are called heuristic rules. Many heuristic rules are proposed, well known are the
quasi-optimality criterion [2, 3, 5, 10, 20, 21, 22, 25, 35], L-curve rule [16, 17],
GCV-rule [8], Hanke-Raus rule [15], Reginska’s rule [33], about other rules see [18,
19, 23, 26]. Heuristic rules are numerically compared in [4, 10, 18, 26]. It is also well
known that it is not possible to construct heuristic rule guaranteeing convergence
‖uα −u∗‖ → 0 as the noise level goes to zero (see [1]). Nevertheless the heuristic
rules give good results in many problems. The problem is that all these rules may
fail in some problems and without additional information about the solution, it is
difficult to decide, is the obtained parameter reliable or not.

In this article we propose a new strategy for heuristic parameter choice. It is
based on analysis of local minimizers of the function ψQ(α) = α

∥∥∥ duα

dα

∥∥∥, the global
minimizer of which on certain interval [αM,α0] is taken for parameter in the quasi-
optimality criterion. We will call the parameter αR in arbitrary rule R as pseudoop-
timal, if

‖uαR −u∗‖ ≤ const min
α>0

e1(α)

and we show that at least one of local minimizers of ψQ(α) has this property. Our
approach enables to replace the search of the parameter from the interval [αM,α0]
by search of the proper parameter from the set Lmin of the local minimizers of the
function ψQ(α). We consider also the possibility to restrict the set Lmin to its subset
L∗min still containing at least one pseudooptimal parameter. It occurs that in many
problems the restricted set L∗min contains only one local minimizer and this is the
pseudooptimal parameter. If the set L∗min contains several local minimizers, we con-
sider different algorithms for choice of the proper parameter from the set L∗min.

The plan of this paper is as follows. In Section 2 we consider known rules for
choice of the regularization parameter, both in case of known and unknown noise
level. We will characterize distinctive properties of considered heuristic rules pre-
senting results of numerical experiments on test problems [17]. In Section 3 we
consider the set Lmin of local minimizers of the function ψQ(α) and prove that this
set contains at least one pseudooptimal parameter. In Section 4 we show how to
restrict the set Lmin to the set L∗min still containing at least one pseudooptimal pa-
rameter. In Section 5 we consider the case if the set L∗min contains several elements
and we propose some algorithms for finding proper pseudooptimal parameter. In
all sections theoretical results and proposed algorithms are illustrated by results of
numerical experiments on test problems [17].
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2 Rules for the choice of the regularization parameter

An important problem, when applying regularization methods, is the proper choice
of the regularization parameter. The choice of the parameter depends on the infor-
mation about the noise level.

2.1 Parameter choice in the case of known noise level

In case of known noise level δ ,‖ f − f∗‖ ≤ δ we use one of so-called δ -rules, where
certain functional d(α) and constants b2 ≥ b1 ≥ b0 (b0 depends on d(α)) are chosen
and such regularization parameter α(δ ) is chosen which satisfies b1δ ≤ d(α) ≤
b2δ .
1) Discrepancy principle (DP) [24, 36]:

b1δ ≤ ‖Auα − f‖ ≤ b2δ , b1 ≥ 1.

2) Modified discrepancy principle (Raus-Gfrerer rule) [7, 28]:

b1δ ≤ ‖Bα (Auα − f )‖ ≤ b2δ , Bα := α
1/2 (αI +AA∗)−1/2 , b1 ≥ 1.

3) Monotone error rule (ME-rule) [9, 34]:

b1δ ≤ ‖Bα (Auα − f )‖2

‖B2
α (Auα − f )‖

≤ b2δ , b1 ≥ 1.

The name of this rule is justified by the fact that the chosen parameter αME satisfies

‖uαME −u∗‖< ‖uα −u∗‖ ∀α > αME.

Therefore αME ≥ αopt := argmin‖uα −u∗‖ and b1 = b2 = 1 are recommended.
4) Monotone error rule with post-estimation (MEe-rule) [10, 12, 13, 26, 31].

The inequality αME ≥ αopt suggests to use somewhat smaller parameter than
αME . Extensive numerical experiments suggest to take b1 = b2 = 1, to compute
αME and to use the post-estimated parameter αMEe := 0.4αME . Then typically
‖uαMEe−u∗‖/‖uαME−u∗‖ ∈ (0.7,0.9). To our best knowledge in case of exact noise
level this MEe-rule gives typically best results from all known rules for the param-
eter choice.

5) Rule R1 [29]: Let b2 ≥ b1 ≥ 0.325. Let d(α) := α−1/2
∥∥A∗B2

α (Auα − f )
∥∥.

Choose α(δ ) such that d(α(δ ))≥ b1δ , but d(α)≤ b2δ for all α ≤ α(δ ).
Note that

B2
α (Auα − f ) = Au2,α − f , u2,α = (αI +A∗A)−1 (αuα +A∗ f ),

where u2,α is the 2-iterated Tikhonov approximation.
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6) Balancing principle [4, 14, 26, 27]. This rule has different forms in different
papers, in [14] the form

b1δ ≤
√

α
√

q‖uα −uα/q‖
1−q

≤ b2δ , b1 ≥
3
√

6
16
≈ 0.459.

Typically balancing principle is implemented by computing a sequence of Tikhonov
approximations, but in case of a smooth solution much better approximation than
single Tikhonov approximation is simple linear combination of Tikhonov approx-
imations with different parameters - the extrapolated approximation (see [11, 14,
26]). See [32] about effective numerical realization of rules 1)-6).

The last five rules are weakly quasioptimal rules (see [30]) for Tikhonov method.
If ‖ f − f∗‖ ≤ δ , then we have the error estimate (see (3))

∥∥uα(δ )−u∗
∥∥≤C(b1,b2) inf

α>0
e2(α,δ ) =C(b1,b2) inf

α>0

[∥∥u+α −u∗
∥∥+ 1

2
√

α
δ

]
.

The rules for the parameter choice in case of approximately given noise level are
proposed and analysed in [12, 13, 26, 31].

2.2 Parameter choice in the case of unknown noise level

If the noise level is unknown, then, as shown by Bakushinskii [1], no rule for choos-
ing the regularization parameter can guarantee the convergence of the regularized
solution to the exact one as noise level ‖ f − f∗‖ goes to zero. Nevertheless, some
heuristic rules are rather popular, because they often work well in practice and be-
cause in applied ill-posed problems the exact noise level is often unknown.
A classical heuristic rule is the quasi-optimality criterion. In Tikhonov method it
chooses α = αQ as the global minimizer of the function

ψQ(α) = α

∥∥∥∥duα

dα

∥∥∥∥= α
−1∥∥A∗B2

α (Auα − f )
∥∥ . (4)

In case of the discrete version of the quasi-optimality criterion we choose α = αQD
as the global minimizer of the function

∥∥uα −uqα

∥∥, where 0 < q < 1.
The Hanke-Raus rule finds the regularization parameter α = αHR as the global min-
imizer of the function

ψHR(α) = α
−1/2 ‖Bα (Auα − f )‖ .

In practice the L-curve rule is popular. This rule uses the graph with log-log scale,
on x-axis ‖Auα − f‖ and on y-axis ‖uα‖. The name of the rule is justified by fact
that often the points (‖Auα − f‖ ,‖uα‖) have shape similar to the letter L and pa-
rameter αL which corresponds to the ”corner point” is often a good parameter. In
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the literature several concrete rules for choice of the ’corner point’ are proposed.
One natural rule is proposed in [33] where global minimum point of the function

ψRE(α) = ‖Auα − f‖‖uα‖τ ,

with τ ≥ 1 is used. In numerical experiments below we used this rule with τ = 1.
Some heuristic rules choose the regularization parameter as global minimizer

of a function α−1/2d(δ ) with function d(δ ) from some δ -rule 1)-6) from Section
2.1 (see [10]). For example, the quasi-optimality criterion and Hanke-Raus rule use
functions d(δ ) from the rules 5) (R1) and 2) (modified discrepancy principle) re-
spectively. In [10] heuristic counterpart of rule 3) (ME-rule) is also studied. We call
this rule as HME-rule (H means ”heuristic counterpart”), here the regularization
parameter α = αHME is chosen as the global minimizer of the function

ψHME(α) = α
−1/2 ‖Bα (Auα − f )‖2

‖B2
α (Auα − f )‖

.

In the following we will find the regularization parameter from the set of param-
eters

Ω =
{

α j : α j = qα j−1, j = 1,2, ...,M, 0 < q < 1
}
, (5)

where α0,q,αM are given. In the case if in the discretized problem the minimal
eigenvalue λmin of the matrix AT A is larger than αM , the heuristic rules above choose
parameter αM , which is generally not a good parameter. The works [21, 22, 25]
propose to search the global minimum of the function ψQ(α) in the interval
[max(αM,λmin),α0]. We use basically the same approach but consider also local
minimizers.

We say that the discretized problem Au = f do not need regularization if

e1(λmin) = min
α∈Ω ,α≥λmin

e1(α).

If λmin > αM and the discretized problem do not need regularization then αM is the
proper parameter while then it is easy to show the error estimate

‖uαM −u∗‖ ≤ e1(αM)≤ 2 min
α∈Ω

e1(α).

Searching the parameter from the interval [max(αM,λmin),α0] means the a priori as-
sumption that the discretized problem needs regularization. Note that if λmin > αM ,
then in general case it is not possible to decide (without additional information about
solution or about noise of the data), needs the discretized problem regularization or
not. In practice in the case λmin > αM it is meaningful to choose the regularization
parameter αH from the interval [λmin,α0], while then our parameter is not too small.
If we have some information about solution or about the noise then this information
may help to decide, is αH or αM the better final parameter.

Our tests are performed on the well-known set of test problems by Hansen
[17]. In all tests we used discretization parameter n = 100. Since the perfor-
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mance of rules generally depends on the smoothness p of the exact solution in (1),
we complemented the standard solutions u∗ of (now discrete) test problems with
smoothened solutions |A|pu∗, |A| := (A∗A)1/2, p = 2 (computing the right-hand side
as A(|A|pu∗)). After discretization all problems were scaled (normalized) in such
a way that the Euclidean norms of the operator and the right-hand side were 1.
On the base of exact data f∗ we formed the noisy data f , where ‖ f − f∗‖ has values
10−1,10−2, ...,10−6, f − f∗ has normal distribution and the components of the noise
were uncorrelated. We generated 20 noise vectors and used these vectors in all prob-
lems. We search the regularization parameter from the set Ω , where α0 = 1,q= 0.95
and M is chosen so that αM ≥ 10−18 > αM+1.
Since in model equations the exact solution is known, it is possible to find the regu-
larization parameter α∗, which gives the smallest error in the set Ω . For every rule
R the error ratio

E =
‖uαR −u∗‖
‖uα∗ −u∗‖

=
‖uαR −u∗‖

minα∈Ω ‖uα −u∗‖
describes the performance of the rule R on this particular problem. To compare the
rules or to present their properties, the following tables show averages A and max-
imums M of these error ratios over various parameters of the data set (problems
1-10, smoothness indices p, noise levels δ ). We say that the heuristic rule fails if the
error ratio E > 100. Table 1 contains the results of the previous heuristic rules by
problems.

Table 1 Averages of error ratios E and failure % (in parenthesis) for heuristic rules, p = 0

Problem Λ Quasiopt. HR HME Reginska

Baart 1666 1.54 2.58 2.52 1.32
Deriv2 16 1.08 2.07 1.72 35.19 (3.3)
Foxgood 210 1.57 8.36 7.71 36.94 (10.8)
Gravity 4 1.13 2.66 2.32 20.49 (0.8)
Heat 4∗1029 > 100 (66.7) 1.64 1.48 23.40 (4.2)
Ilaplace 16 1.24 1.94 1.81 1.66
Phillips 9 1.09 2.27 1.91 > 100 (44.2)
Shaw 290 1.43 2.34 2.23 1.80
Spikes 1529 1.01 1.03 1.03 1.01
Wing 9219 1.40 1.51 1.51 1.18

This table shows that the quasi-optimality principle succeeds to choose a proper
parameter in almost all problems, except the problem heat where this principle fails
in 66.7 % cases. In contrast to other problems in problem heat the maximal ratio Λ =
maxλk>max(αM ,λn) λk/λk+1 of consecutive eigenvalues 1 = λ1 ≥ λ2 ≥ ...≥ λn of the
matrix AT A in the interval [max(αM,λn),1] is much larger than in other problems.
It means that location of the eigenvalues in the interval [max(αM,λn),1] is sparse.

The rules of Hanke-Raus and HME did not fail in test problems, but the error
of the approximate solution is in most problems approximately two times larger
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than for parameter chosen by the quasi-optimality principle. The problem in these
rules is that they choose too large parameter comparing with the optimal parameter.
Reginska’s rule may fail in many problems but it has the advantage that it works
better than other rules if the noise level is large. The Reginska’s rule has average
of error ratios of all problems E = 1.46 and E = 3.23 in cases ‖ f − f∗‖ = 10−1

and ‖ f − f∗‖= 10−2 respectively, the Hanke-Raus rule has corresponding averages
E = 3.41 ja E = 3.50.

By implementing of all these rules the problem is that without additional infor-
mation in general case it is difficult to decide, is the obtained parameter good or not.
In the following we propose a methodology enabling in many cases to assert that
obtained parameter is pseudooptimal.

3 Local minimum points of the function ψQ(α)

In the following we investigate the function ψQ(α) in (4) and show that at least
one local minimizer of this function is the pseudooptimal parameter. We need some
preliminary results.

Lemma 1. The function ψQ(α) has the estimate (see (2) for notation e1(α))

ψQ(α)≤ e1(α). (6)

Proof. The following equalities hold:

Auα − f = A(αI +A∗A)−1 A∗ f − f =−α (αI +AA∗)−1 f ,

−α
−1A∗B2

α (Auα − f ) = αA∗ (αI +AA∗)−2 f = α (αI +A∗A)−2 A∗ f = (7)

= αA∗A(αI +A∗A)−2 u∗+α (αI +A∗A)−2 A∗( f − f∗).

Now the inequality (6) follows from (4) and the inequalities

α

∥∥∥A∗A(αI +A∗A)−2 u∗
∥∥∥≤ α

∥∥∥(αI +A∗A)−1 u∗
∥∥∥= ∥∥u+α −u∗

∥∥ .
α

∥∥∥(αI +A∗A)−2 A∗( f − f∗)
∥∥∥≤ ∥∥∥(αI +A∗A)−1 A∗( f − f∗)

∥∥∥= ∥∥uα −u+α
∥∥ .ut

Remark 1. Note that limα→∞ ψQ(α) = 0, but limα→∞ e1(α) = ‖u∗‖. Therefore in
the case of too large α0 this α0 may be global (or local) minimizer of the func-
tion ψQ(α). We recommend to take α0 = c‖A∗A‖ ,c ≤ 1 or to minimize the func-
tion ψ̃Q(α) := (1+α/‖A∗A‖)ψQ(α) instead of ψQ(α). Due to limit limα→0(1+
α/‖A∗A‖) = 1 the function ψ̃Q(α) approximately satisfies (6).

Lemma 2. Denote ψQD(α) = (1−q)−1∥∥uα −uqα

∥∥. Then it holds

ψQ(α)≤ ψQD(α)≤ q−1
ψQ(qα).
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Proof. We use the equalities (7) and

uα −uqα = (αI +A∗A)−1 A∗ f − (qαI +A∗A)−1 A∗ f =

= (q−1)α (αI +A∗A)−1 (qαI +A∗A)−1 A∗ f .

The following inequalities prove the lemma:

ψQ(α) = α

∥∥∥(αI +A∗A)−2 A∗ f
∥∥∥≤ α

∥∥∥(αI +A∗A)−1 (qαI +A∗A)−1 A∗ f
∥∥∥=

= ψQD(α)≤ α

∥∥∥(qαI +A∗A)−2 A∗ f
∥∥∥= q−1

ψQ(qα).

ut

In the following we define the local minimum points of the function ψQ(α) on the
set Ω (see (5)).

We say that the parameter αk,0 ≤ k ≤M− 1 is the local minimum point of the
sequence ψQ(αk), if ψQ(αk)< ψQ(αk+1) and in case k > 0 there exists index j ≥ 1
such, that ψQ(αk) = ψQ(αk−1) = ...= ψQ(αk− j+1)< ψQ(αk− j). The parameter αM
is the local minimum point if there exists index j ≥ 1 so, that

ψQ(αM) = ψQ(αM−1) = ...= ψQ(αM− j+1)< ψQ(αM− j).

Let the number of the local minimum points be K and denote

Lmin =
{

α
(k)
min : α

(1)
min > α

(2)
min > ... > α

(K)
min

}
.

The parameter αk,0 < k < M is the local maximum point of the sequence ψQ(αk)
if ψQ(αk)> ψQ(αk+1) and there exists index j ≥ 1 so, that

ψQ(αk) = ψQ(αk−1) = ...= ψQ(αk− j+1)> ψQ(αk− j).

We denote by α
(k)
max the local maximum point between the local minimum points

α
(k+1)
min and α

(k)
min,1 ≤ k ≤ K− 1. Denote α

(0)
max = α0,α

(K)
max = αM . Then by the con-

struction
α
(0)
max ≥ α

(1)
min > α

(1)
max > ... > α

(K−1)
max > α

(K)
min ≥ α

(K)
max.

Theorem 1. The following estimates hold for the local minimum points of the func-
tion ψQ(α):

1.
min

α∈Lmin
‖uα −u∗‖ ≤ q−1C min

αM≤α≤α0
e1(α), (8)

where

C := 1+ max
1≤k≤K

max
α j∈Ω ,α

(k)
max≤α j≤α

(k−1)
max

T
(

α
(k)
min,α j

)
≤ 1+ cq ln

(
α0

αM

)
,
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T (α,β ) :=

∥∥uα −uβ

∥∥
ψQ(β )

, cq :=
(
q−1−1

)
/ lnq−1→ 1 if q→ 1.

2. Let u∗ = |A|p v, ‖v‖ ≤ ρ , p > 0 and α0 = 1. If δ0 :=
√

αM ≤ ‖ f − f∗‖, then

min
α∈Lmin

‖uα −u∗‖≤ cpρ
1

p+1 max{ln ‖ f − f∗‖
δ0

, |ln‖ f − f∗‖|}‖ f − f∗‖
p

p+1 ,0< p≤ 2.

(9)

Proof. For arbitrary parameters α ≥ 0, β ≥ 0 the inequalities

‖uα −u∗‖ ≤
∥∥uα −uβ

∥∥+∥∥uβ −u∗
∥∥≤ T (α,β )ψQ(β )+ e1(β )

and (6) lead to the estimate

‖uα −u∗‖ ≤ (1+T (α,β ))e1(β ). (10)

It is easy to see that

min
α j∈Ω

e1(α j)≤ q−1 min
αM≤α≤α0

e1(α), (11)

while in case qα ≤ α ′ ≤ α we have e1 (α
′)≤ q−1e1 (α).

Let α j∗ = α0q j∗ be the global minimum point of the function e1(α) on the set of the
parameters Ω . Then α j∗ ∈ [α

(k)
max,α

(k−1)
max ] for some k,1 ≤ k ≤ K. Denote u j = uα j

and ukmin = u
α
(k)
min

. Then using (10) we can estimate

‖ukmin−u∗‖ ≤
(

1+T (α(k)
min,α j∗)

)
e1(α j∗)≤(

1+ max
α
(k)
max≤α j≤α

(k−1)
max

T (α(k)
min,α j)

)
min

α j∈Ω
e1(α j).

Since we do not know to which interval [α(k)
max,α

(k−1)
max ] the parameter α j∗ belongs,

we take maximum of T over all intervals, 1≤ k ≤ K. Using also (11) we obtain the
estimate (8).
Now we show that C ≤ 1+ cq ln

(
α0
αM

)
. At first we estimate T (α(k)

min,α j) in the case

if α
(k)
min ≤ α j ≤ α

(k−1)
max . Then Lemma 2 enables to estimate∥∥ukmin−u j

∥∥≤ Σ j≤i≤kmin−1 ‖ui−ui+1‖ ≤ q−1(1−q)Σ j≤i≤kmin−1ψQ(αi+1)

and

T (α(k)
min,α j) =

∥∥ukmin−u j
∥∥

ψQ(α j)
≤ q−1(1−q)Σ j≤i≤kmin−1

ψQ(αi+1)

ψQ(α j)
≤

(q−1−1)(kmin− j)≤ (q−1−1)M =
(q−1−1)

lnq−1 ln
α0

αM
= cq ln

α0

αM
.
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If α
(k)
max ≤α j ≤α

(k)
min, then analogous estimation of T (α(k)

min,α j) gives the same result.
For source-like solution u0−u∗ = |A|p v, ‖v‖ ≤ ρ , p > 0 the error estimate

min
αM≤α≤α0

e1(α)≤ cpρ
1/(p+1)‖ f − f∗‖p/(p+1),0 < p≤ 2

is well-known (see [6, 36]), the relations

ln
α0

αM
= lnδ0

−2 ≤ 4max{ln ‖ f − f∗‖
δ0

, |ln‖ f − f∗‖|}

lead to the estimate (9). ut

The results of numerical experiments for local minimizers α ∈ Lmin of the func-
tion ψQ(α) are given in the Table 2. For comparison the results of δ -rules with
δ = ‖ f − f∗‖ are added to the columns 2-4. Columns 5 and 6 contain respectively
the averages and maximums of error ratios E for the best local minimizer α ∈ Lmin.
The results show that the Tikhonov approximation with the best local minimizer
α ∈ Lmin is even more accurate than with the best δ -rule parameter αMEe. Columns
7 and 8 contain the averages and maximums of cardinalities |Lmin| of sets Lmin (num-
ber of elements of these sets). Note that number of local minimizers depends on pa-
rameter q (for smaller q the number of local minimizers is smaller) and on length of
minimization interval determined by the parameter αM . The number of local mini-
mizers is smaller also for larger noise size. Columns 9 and 10 contain the averages
and maximums of values of constant C in the a posteriori error estimate (8). The
value of C and error estimate (8) allow to assert, that in test problems [17] the choice
of α as the best local minimizer in Lmin guarantees that error of the Tikhonov ap-
proximation has the same order as minαM≤α≤α0 e1(α). Note that average and maxi-
mum of error ratio E1 = ‖uαR −u∗‖/minα∈Ω e1(α) for the best local minimizer αR
over all problems were 0.84 and 1.39 (for the MEe-rule corresponding error ratios
were 0.85 and 1.69).

Table 2 Results for the set Lmin, p = 0

Problem ME MEe DP Best of Lmin |Lmin| Apost. C
Aver E Aver E Aver E Aver E Max E Aver Max Aver Max

Baart 1.43 1.32 1.37 1.23 2.51 6.91 8 3.19 3.72
Deriv2 1.09 1.08 1.28 1.08 1.34 2.00 2 3.54 4.49
Foxgood 1.98 1.42 1.34 1.47 6.19 3.63 6 3.72 4.16
Gravity 1.40 1.13 1.16 1.13 1.83 1.64 3 3.71 4.15
Heat 1.19 1.03 1.05 1.12 2.36 3.19 5 3.92 4.50
Ilaplace 1.33 1.21 1.26 1.20 2.56 2.64 5 4.84 6.60
Phillips 1.27 1.02 1.02 1.06 1.72 2.14 3 3.99 4.66
Shaw 1.37 1.24 1.28 1.19 2.15 4.68 7 3.48 4.43
Spikes 1.01 1.00 1.01 1.00 1.02 8.83 10 3.27 3.70
Wing 1.16 1.13 1.15 1.09 1.38 5.20 6 3.07 3.72

Total 1.32 1.16 1.19 1.16 6.19 4.09 10 3.67 6.60



Heuristic parameter choice in Tikhonov regularization 11

4 Restricted set of the local minimizers of the function ψQ(α)

We will restrict the set Lmin using two phases. In the first phase we remove from Lmin
local minimizers in interval, where the function ‖Bα (Auα − f )‖ decreases only a lit-
tle bit. On the second phase we remove from set obtained on the first phase these
local minimizers for which the function ψQ(α) for decreasing α-values has only
small growth before the next decrease.

1. Denote δM := ‖BαM (AuαM − f )‖ and by α = αMD the parameter for which
‖Bα (Auα − f )‖= bδM, b > 1. Denote αMDQ := min(αMD,αQ), where αQ ∈ Lmin

is the global minimizer of the function ψQ(α) on the set Ω . Let α
(k0)
max ≤ αMDQ <

α
(k0−1)
max for some k0,1≤ k0 ≤K. Then the set of local minimizers what we obtain on

the first phase of restriction, has the form L0
min =

{
α
(k)
min : 1≤ k ≤ k0

}
. In the case

α
(k0)
max ≤ αMDQ ≤ α

(k0)
min we change denotation to α

(k0)
max := α

(k0)
min .

2. We remove from the set L0
min these local minimizers α

(k)
min and following maxi-

mizers α
(k)
max, which satisfy the following conditions:

α
(k)
min 6= α

(k)
max;

ψQ(α
(k)
max)

ψQ(α
(k)
min)
≤ c0;

ψQ(α
(k)
min)

min j≤k ψQ(α
( j)
min)
≤ c0,

where c0 > 1 is some constant. We denote by

L∗min :=
{

α
(k)
min : α

(1)
min > α

(2)
min > ... > α

(k∗)
min

}
the set of minimizers remained in L0

min and denote the remained maximizers by
α
(k)
max : α

(0)
max > α

(1)
min > ... > α

(k∗)
max. According to this algorithm the following in-

equalities hold:

α
(0)
max ≥ α

(1)
min > α

(1)
max > ... > α

(k∗−1)
max > α

(k∗)
min ≥ α

(k∗)
max.

Note that if αM is the global minimizer of the function ψQ(α) then αM ∈ L∗min. But
in case αMD < αQ the global minimizer of the function ψQ(α) may not belong to
the set L∗min. For the restricted set of local minimizers the following theorem hold.

Theorem 2. The following estimates hold for the local minimum points of the set
L∗min:

1.

min
α∈L∗min

‖uα −u∗‖ ≤max
{

q−1C1 min
αM≤α≤α0

e1(α),C2(b) min
αM≤α≤α0

e2(α,δ∗)

}
,

(12)
where
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C1 := 1+ max
1≤k≤k∗

max
α j∈Ω ,α

(k)
max≤α j≤α

(k−1)
max

T
(

α
(k)
min,α j

)
≤ 1+ c0cq ln

(
α0

α
(k∗)
max

)
(13)

and δ∗ = max(δM,‖ f − f∗‖), C2(b) = b+2.

2. Let u∗ = |A|p v, ‖v‖ ≤ ρ , p > 0, α0 = 1. If δ0 :=
√

αM ≤ ‖ f − f∗‖, then

min
α∈L∗min

‖uα −u∗‖ ≤ c0cp ln
‖ f − f∗‖

δ0
ρ

1
p+1 |ln‖ f − f∗‖|‖ f − f∗‖

p
p+1 ,0 < p≤ 2.

(14)

Proof. Due to the inequality δ∗ ≥ ‖ f − f∗‖ the global minimizer of the function
e2(α,δ∗) is greater or equal to the global minimizer of the function e1(α). Denote
α := α

(k∗)
min , let α∗ be the global minimizer of the function e2(α,δ∗) and α j∗ be the

global minimizer of the function e1(α) on the set Ω . We consider separately the
cases a) α j∗ ≥ α , b) α j∗ ≤ α ≤ α∗, c) α∗ ≤ α .
In the case a) we get the estimate

min
α∈L∗min

‖uα −u∗‖ ≤ q−1C1 min
αM≤α≤α0

e1(α) (15)

analogically to the proof of Theorem 1, but use for the estimation of T (α(k)
min,α j) the

inequality Σ j≤i≤kmin−1
ψQ(αi+1)

ψQ(α j)
≤ c0M.

In the case b) we estimate

‖uα −u∗‖≤
∥∥u+α∗ −u∗

∥∥+0.5α j∗−1/2 ‖ f − f∗‖≤ min
α∈Ω

e1(α)+min
α

e2(α,δ∗). (16)

In the case c) we have α ≤ αMD and therefore also ‖Bα (Auα − f )‖ ≤ bδM ≤ bδ∗.
Now we can prove analogically to the proof of the weak quasioptimality of the mod-
ified discrepancy principle ([30]) that under assumption α∗ ≤ α the error estimate

‖uα −u∗‖ ≤C2(b) min
αM≤α≤α0

e2(α,δ∗) (17)

holds. Now the assertion 1 of Theorem 2 follows from the inequalities (15-17). The
proof of assertion 2 is analogical to the proof of Theorem 1. ut

We recommend to choose the constant b from the interval [1.5;2] and coefficient
c0 from the interval [1.5;3]. In all following numerical examples b = c0 = 2. The
numerical experiments show that the set L∗min contains in many test problems only
one local minimizer and this is a good regularization parameter. In the Table 3 for
the test problems [17] the results are given for the set L∗min. The columns 2-7 contain
the averages and maximums of the error ratio E for the best parameter from the set
L∗min, the average and maximum of numbers |L∗min| of elements of L∗min and averages
and maximums of the constants C1 in the error estimate. The last column of the table
contains % of cases, where the set L∗min contained only one element or two elements
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one of which was αM . Tables 2, 3 show that for the best parameter from the set
L∗min the error ratio E is smaller than for parameter from the ME-rule. Table 3 shows
also that in test problems foxgood, gravity ja ilaplace the set L∗min contains only one
element and this a good parameter. Due to small values of C1 the chosen parameter
is pseudooptimal. Note that average and maximum of the error ratio E1 for the best
local minimizer αR from L∗min over all problems were 0.88 and 1.61 respectively.

Table 3 Results about the set L∗min, p = 0

Problem Best of L∗min |L∗min| Apost. C1 |L∗min|= 1
Aver E Max E Aver Max Aver Max %

Baart 1.40 2.91 1.41 3 6.38 7.93 60.8
Deriv2 1.08 1.34 2.00 2 3.54 4.49 100
Foxgood 1.57 6.69 1,00 1 4.39 4.92 100
Gravity 1.14 2.15 1.00 1 3.02 3.95 100
Heat 1.12 2.36 2.05 3 5.08 5.38 0
Ilaplace 1.23 2.56 1.00 1 4.68 6.68 100
Phillips 1.06 1.72 2.10 3 3.97 4.66 90.0
Shaw 1.39 3.11 1.16 2 5.89 8.06 84.2
Spikes 1.01 1.03 1.64 3 10.07 11.82 55.0
Wing 1.30 1.84 2.18 4 3.03 6.63 1.7

Total 1.23 6.69 1.55 4 5.01 11.82 69.2

5 Choice of the regularization parameter from the set L∗min

Now we give algorithm for choice of the regularization parameter from the set L∗min.
1. If the set L∗min contains only one parameter, we take this for the regularization pa-
rameter. On the base of Theorem 2 we know (we can compute also the a posteriori
coefficient C1), that this parameter is reliable.
2. If the set L∗min contains two parameters one of which is αM , we take for the reg-
ularization parameter another parameter α 6= αM . This parameter is good under the
assumption that this problem needs regularization.
3. If the set L∗min contains after possible elimination of αM more than one parameter,
we may use for parameter choice the following algorithms.
a) Let αQ, αHR be global minimizers of the functions ψQ(α), ψHR(α) respectively
on the interval [max(αM,λmin),α0]. Let αQ1 := max(αQ,αHR). Choose from the set
L∗min the largest parameter α , which is smaller or equal to αQ1.
b) Let αRE be the global minimizer of the function ψRE(α) on the interval
[max(αM,λmin),α0]. Let αQ2 be the global minimizer of the function ψQ(α) on
the interval [αRE ,α0]. Choose from the set L∗min the largest parameter α , which is
smaller or equal to αQ2.
c) For the parameters from L∗min we compute value R(α) = ψHR(α)

‖uα‖ which we con-
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sider as the rough estimate for the relative error ‖uα−u∗‖
‖u∗‖ under assumption that pa-

rameter α is near to the optimal parameter. We choose for the regularization pa-
rameter the smallest parameter α∗ from the set L∗min, which satisfies the condition
R(α∗) ≤ C∗minα∈L∗min,α>α∗ R(α). We recommend to choose the constant C∗ from
the interval 5≤C∗ ≤ 10. In the numerical experiments we used C∗ = 5.
Note that these algorithms are motivated by experience that global minimizers of
functions ψHR(α), R(α∗) are typically too large parameters. Therefore we choose
smaller parameter under condition, that in case, if the optimal local minimizer is
larger than chosen parameter, the chosen parameter is still pseudooptimal. Choice
of value of constant C in algorithm c) was suggested by numerical experiments.
The results of the numerical experiments for different algorithms for the parameter
choice are given in the Table 4. The results for all 3 algorithms are very similar and
the average of the error ratio is even smaller than for α from the ME-rule. In the case
if the set L∗min contained more than 3 parameters, in 68.1 % of cases all 3 algorithms
gave the same parameter and in 92.7 % of cases the parameters from algorithms b)
ja c) coincided. We changed also the parameters b∈ [1.5;2] and c0 ∈ [1.5;3], but the
overall average of the ratio E changed less than 2 %.

Table 4 Averages and maximums of error ratios E in case of different heuristic algorithms, p = 0

Problem Algorithm a) Algorithm b) Algorithm c)
Aver E Max E Aver E Max E Aver E Max E

Baart 1.83 3.63 1.61 2.91 1.61 2.91
Deriv2 1.08 1.34 1.08 1.34 1.08 1.34
Foxgood 1,57 6.69 1.57 6.69 1.57 6.69
Gravity 1.14 2.15 1.14 2.15 1.14 2.15
Heat 1.12 2.36 1.12 2.36 1.12 2.36
Ilaplace 1.23 2.56 1.23 2.56 1.23 2.56
Phillips 1.06 1.72 1.06 1.72 1.06 1.72
Shaw 1.48 3.64 1.45 3.64 1.45 3.64
Spikes 1.01 1.03 1.01 1.03 1.01 1.03
Wing 1.50 1.86 1.38 2.04 1.32 1.84

Total 1.30 6.69 1.26 6.69 1.26 6.69

The proposed algorithms for parameter choice are complicated (formation of the
set L∗min) but they enable to estimate also the reliability of the chosen parameter and
propose alternative parameters if the set L∗min contains several local minimizers. If
some information about solution or noise is available, it may help to find from the
set L∗min better parameter than algorithms a)-c) find. If the purpose is only parameter
choice, simpler rules below may be used (parameters αQ1 and αQ2 are defined in
algorithm a), b)).
1. We choose for the regularization parameter the smallest local minimizer α

(k∗)
min of

the function ψQ(α) which satisfies the following conditions:
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ψQ(α
(k)
max)

ψQ(α
(k)
min)
≤ c0, k = k0,k0 +1, ...,k∗−1; (18)

ψQ(α
(k)
min)

min j≤k ψQ(α
( j)
min)
≤ c0, k = k0,k0 +1, ...,k∗, (19)

where k0 is the index for which α
(k0)
min ≤ αQ1 ≤ α

(k0−1)
max .

2. We choose for the regularization parameter the smallest local minimizer α
(k∗)
min

of the function ψQ(α) satisfying conditions (18), (19) where k0 is index for which
α
(k0)
min ≤ αQ2 ≤ α

(k0−1)
max .

These rules give in test problems [17] the same results as the algorithms a) and b)
respectively.

The Table 5 gives results of the numerical experiments in the case of smooth
solution, p = 2. The table shows that in case of smooth solution the number of local
minimizers in Lmin and number of elements L∗min are smaller than in case p = 0. If
the set L∗min contains several elements, then the algorithms a) and c) gave the same
parameter, which was always the best parameter from L∗min with smallest error. In
case of algorithm b) the overall average of the ratio E was 1.25. In all problems
except the problem wing the heuristic rule gave parameter where the average of
error was smaller than by parameter from the ME-rule, and only 10 % larger than
by parameter from the MEe-rule (both ME-rule and the MEe rule used the exact
noise level).

Table 5 Results of the numerical experiments, p = 2

Problem ME MEe Best of Lmin |Lmin| Best of L∗min |L∗min| |L∗min|= 1
Aver E Aver E Aver E Aver Aver E Aver %

Baart 1.86 1.19 1.18 4.74 1.41 1.02 98.3
Deriv2 1.10 1.19 1.03 2.00 1.03 2.00 100
Foxgood 1.56 1.13 1.14 2.08 1.20 1.00 100
Gravity 1.33 1.05 1.09 1.72 1.11 1.00 100
Heat 1.13 1.12 1.05 2.10 1.05 2.10 0
Ilaplace 1.47 1.06 1.11 2.73 1.11 1.00 100
Phillips 1.26 1.06 1.04 2.10 1.04 2.10 90
Shaw 1.37 1.06 1.11 3.72 1.22 1.01 99.2
Spikes 1.85 1.12 1.19 4.78 1.31 1.00 100
Wing 1.67 1.14 1.22 4.53 1.73 1.01 99.2

Total 1.46 1.11 1.12 3.05 1.22 1.32 88.7

We finish the paper with the following conclusion. For the heuristic choice of
the regularization parameter we recommend to choose the parameter from the set of
local minimizers of the function ψQ(α). Proposed algorithm enables to restrict this
set and in many problems the restricted set contains only one element, this parameter
is the pseudooptimal parameter.
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