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Abstract | We consider linear ill-posed problems Ax = y in Hilbert spaces with minimum-

norm solution x

y

and suppose that instead of y noisy data y

�

are given satisfying ky � y

�

k � �

with known noise level �. For the stable numerical solution regularization methods are con-

sidered including continuous regularization methods such as ordinary Tikhonov regularization

x

�

r

= (A

�

A + r

�1

I)

�1

A

�

y

�

and iterative regularization methods. For the proper choice of the

regularization parameter r (which is the stopping index in iterative methods) we study the

monotone error rule (ME rule): Choose r = r

ME

as the largest r-value for which it can be guar-

anteed that the error kx

�

r

� x

y

k is monotonically decreasing for r 2 (0; r

ME

]. We compare this

rule with other a posteriori rules and give conditions for which convergence and order optimal

convergence rate results can be guaranteed. For the computation of r

ME

in Tikhonov methods

some nonlinear equation has to be solved. Newton's iteration for this equation appears to be

globally and monotonically convergent. Numerical experiments are provided that verify some

of the theoretical results.

1. INTRODUCTION

In this paper we consider linear ill-posed problems

Ax = y (1.1)

where A 2 L(X;Y ) is a bounded operator with non-closed range R(A) and X;Y are

in�nite dimensional real Hilbert spaces with inner products (�; �) and norms k � k, respec-

tively. We are interested in the minimum-norm solution x

y

of problem (1.1) and assume

that instead of exact data y there are given noisy data y

�

2 Y with ky � y

�

k � � and

known noise level �.

Ill-posed problems (1.1) arise in a wide variety of problems in applied sciences. For

their stable numerical solution regularization methods are necessary, see [4, 19, 26, 39].
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Regularization methods can be divided into continuous regularization methods that in-

clude ordinary Tikhonov regularization x

�

r

:= R

r

y

�

= (A

�

A+ r

�1

I)

�1

A

�

y

�

, and iterative

regularization methods where the stopping index plays the role of the regularization pa-

rameter. The element x

�

r

= R

r

y

�

is called regularized approximation for the minimum-

norm solution x

y

of problem (1.1) provided

1. for any r > 0, R

r

: Y ! X is continuous and

2. for arbitrary y 2 Y with Qy 2 R(A), lim

r!1

kR

r

y � x

y

k = 0, where Q is the projection

operator onto R(A)

(see [36]). Traditional regularization methods possess the property that in the case of

exact data the error kx

0

r

� x

y

k as a function of r is monotonically decreasing for r !1.

This property is no longer true for the error kx

�

r

� x

y

k. In the case of noisy data the

situation is as follows:

(i) If r becomes too large, then the error kx

�

r

� x

y

k increases due to the fact of ill-

posedness of the operator equation (1.1).

(ii) If r becomes too small, then the error kx

�

r

� x

y

k increases due to the fact that the

error kx

0

r

� x

y

k is monotonically increasing for decreasing r-values.

The monotone decrease of the error kx

�

r

�x

y

k for growing r-values can only be guaranteed

for small r. Typically kx

�

r

� x

y

k diverges for r ! 1. Therefore a rule for the proper

choice of the regularization parameter r is necessary.

In the monotone error rule for choosing a proper regularization parameter the idea

consists in searching for a largest computable regularization parameter r = r

ME

for which

we can guarantee that the error kx

�

r

� x

y

k is monotonically decreasing for r 2 (0; r

ME

].

For continuous regularization methods this means that

d

dr

kx

�

r

� x

y

k

2

� 0 for all r 2 (0; r

ME

] ; (1.2)

for iteration methods this means that

kx

�

r

� x

y

k � kx

�

r�1

� x

y

k for all r = 1; 2; : : : ; r

ME

: (1.3)

Similar rules for the choice of the regularization parameter which are based on mono-

tonicity properties of the error were proposed and studied for some iterative methods

in [1, 2, 13, 15, 16], for the method of ordinary Tikhonov regularization in [34] and for

the method of iterated Tikhonov regularization and some other continuous regularization

methods in [14, 15, 35].

In this paper we study the ME rule for continuous regularization methods includ-

ing Tikhonov methods and asymptotical regularization, and for iterative regularization

methods including gradient type methods (Landweber's method, steepest descent method,

minimal error method) and implicit iteration methods. We compare the ME rule with

other a posteriori rules including Morozov's discrepancy principle and study questions

concerning convergence x

�

r

ME

! x

y

for � ! 0 and concerning order optimal error bounds

under certain source conditions. For the computation of r

ME

in Tikhonov methods some

nonlinear equation

~

d

ME

(r) = � has to be solved. The function

~

d

ME

appears to be strictly

monotonically decreasing and strictly convex. These properties guarantee global and

monotone convergence for Newton's iteration. In the �nal section numerical examples are

provided which verify some of the theoretical results.
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2. CONTINUOUS REGULARIZATION METHODS

2.1. Continuous regularization methods and the ME rule

In continuous regularization methods which include the method of ordinary Tikhonov

regularization x

�

r

= (A

�

A + r

�1

I)

�1

A

�

y

�

we use in this section for the regularization

parameter the traditional notation � = 1=r instead of r. We consider continuous regular-

ization methods of the general form

x

�

�

= g

�

(A

�

A)A

�

y

�

: (2.1)

Here g

�

(�) : [0; a] ! IR with a = kAk

2

is a family of piecewise continuous functions

depending on a positive regularization parameter � > 0 and the operator function g

�

is

de�ned according to

g

�

(A

�

A) =

Z

a

0

g

�

(�) dE

�

where A

�

A =

R

a

0

�dE

�

is the spectral decomposition of the operator A

�

A. For the func-

tions g

�

(�) we assume as in [4, 26, 38, 39] that there exist constants , 

p

and p

0

such

that for � > 0

sup

0���a

jg

�

(�)j � �

�1

(2.2)

and

sup

0���a

�

p

j1� �g

�

(�)j � 

p

�

p

for 0 � p � p

0

: (2.3)

The largest constant p

0

in assumption (2.3) is called quali�cation of the regularization

method (2.1) (see [39]). Three well known a posteriori rules for choosing the regularization

parameter � in continuous regularization methods (2.1) are:

1. Morozov's discrepancy principle [4, 27, 38, 39]. In this principle (D principle) the

parameter � = �

D

is chosen as the solution of the equation

d

D

(�) := ky

�

�Ax

�

�

k = C� with C � 1 :

2. Rule of Raus [30]. In this rule, which we call R rule, the regularization parameter

� = �

R

is chosen as the solution of the equation

d

R

(�) :=





(I � g

�

(AA

�

)AA

�

)

1=(2p

0

)

(y

�

�Ax

�

�

)





 = C� with C � 1 :

Here p

0

is the (largest) constant from assumption (2.3).

3. Rule of Engl and Gfrerer [3]. In this rule, which we call EG rule, the regularization

parameter � = �

EG

is chosen as the solution of the equation

d

EG

(�) := 

�1=2

�

�

Ax

�

�

� y

�

;

d

d�

g

�

(AA

�

)y

�

�

1=2

= C� with C � 1 :

Here  is the (smallest) constant from assumption (2.2).

For ordinary and iterated Tikhonov methods the R{ and EG rules coincide. The

resulting rule was also proposed in [8] and we call this rule Raus-Gfrerer rule (RG rule).
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Now let us turn over to the ME rule. The general idea of this rule (see Chapter 1)

consists in searching for a largest computable r = r

ME

for which we can guarantee that

the error kx

�

r

� x

y

k is monotonically decreasing for r 2 (0; r

ME

]. The reformulation of

this idea in terms of � = 1=r means: Search for the smallest computable regularization

parameter � = �

ME

for which we can guarantee that

d

d�

kx

�

�

� x

y

k

2

� 0 for all � 2 [�

ME

;1) :

In order to guarantee this property we use the identity g

�

(A

�

A)A

�

= A

�

g

�

(AA

�

) and

estimate the derivative of the squared error kx

�

�

� x

y

k

2

with respect to � as follows:

1

2

d

d�

kx

�

�

� x

y

k

2

=

�

x

�

�

� x

y

; A

�

d

d�

g

�

(AA

�

)y

�

�

=

�

Ax

�

�

� y

�

+ (y

�

� y);

d

d�

g

�

(AA

�

)y

�

�

�







d

d�

g

�

(AA

�

)y

�







8

>

<

>

:

�

Ax

�

�

� y

�

;

d

d�

g

�

(AA

�

)y

�

�







d

d�

g

�

(AA

�

)y

�







� �

9

>

=

>

;

:

This estimate leads us to following ME rule for continuous regularization method (2.1):

ME rule. For regularization methods with monotonically increasing functions d

ME

(�)

in (2.4), choose � = �

ME

as the solution of the equation

d

ME

(�) :=

�

Ax

�

�

� y

�

;

d

d�

g

�

(AA

�

)y

�

�







d

d�

g

�

(AA

�

)y

�







= � : (2.4)

2.2. The ME rule for ordinary and iterated Tikhonov regularization

In these methods we start with x

�

�;0

= 0 and compute the regularized solution x

�

�

:= x

�

�;m

recursively by solving the m operator equations

(A

�

A+ �I)x

�

�;k

= A

�

y

�

+ �x

�

�;k�1

; k = 1; 2; :::;m : (2.5)

For m = 1 this method is the method of ordinary Tikhonov regularization. In these

methods we have g

�

(�) = [1 � (1 + �=�)

�m

]=� with some �xed positive integer m � 1.

Let r

�;m

denote the discrepancy of the regularized solution x

�

�

= x

�

�;m

, i.e.

r

�;m

= y

�

�Ax

�

�;m

:

Using the identities

1� �g

�

(�) =

�

�

� + �

�

m

and

d

d�

g

�

(�) = �

m

�

2

�

�

� + �

�

m+1

we obtain

r

�;m

= [I �AA

�

g

�

(AA

�

)]y

�

= [�(AA

�

+ �I)

�1

]

m

y

�

and

d

d�

g

�

(AA

�

)y

�

= �

m

�

2

r

�;m+1

:



On the ME rule for choosing the regularization parameter 5

From these representations we conclude that the functions d

RG

(�) and d

ME

(�) for the

RG{ and ME rules have the form

d

RG

(�) = (r

�;m

; r

�;m+1

)

1=2

and d

ME

(�) =

(r

�;m

; r

�;m+1

)

kr

�;m+1

k

: (2.6)

The function d

ME

(�) given in (2.6) possesses following properties, see [34] for m = 1 and

[14, 35] for m � 1:

Theorem 2.1. Let P denote the orthoprojection of Y onto N(A

�

) = R(A)

?

and let

A

�

y

�

6= 0. Then:

(i) d

ME

(�) is strictly monotonically increasing and obeys

d

ME

(0) = kPy

�

k and lim

�!1

d

ME

(�) = ky

�

k :

The equation d

ME

(�) = � has a unique solution �

ME

provided kPy

�

k < � < ky

�

k.

(ii) For all � 2 (�

ME

;1) there holds

d

d�

kx

�

�;m

� x

y

k

2

> 0.

(iii) There holds

d

RG

(�) < d

ME

(�) < d

D

(�) :

If C = 1 in the D principle and in the RG rule, then �

D

< �

ME

< �

RG

.

From parts (ii) and (iii) of the theorem there follows

kx

�

�

ME

� x

y

k < kx

�

�

RG

� x

y

k : (2.7)

Hence, the ME rule provides always a smaller error than the RG rule. Exploiting the

monotonicity property (ii) we obtain for the parameter choice � = �

ME

order optimal

error bounds (see [35]):

Theorem 2.2. Assume x

y

= (A

�

A)

p=2

w with kwk � E. Then for p 2 (0; 2m]

kx

�

�

ME

� x

y

k �

n

2

p

p+1

+ 2

�1

p+1



�

(

p=2

)

1

p

o

E

1

p+1

�

p

p+1

(2.8)

with 

�

=

p

m and 

p=2

= [p=(2m)]

p=2

[1� p=(2m)]

m�p=2

� 1.

2.3. The ME rule for asymptotical regularization

In this regularization method the regularized solution is given by x

�

�

= x

�

(r) where x

�

(r)

is the solution of the initial value problem

d

dt

x

�

(t) +A

�

Ax

�

(t) = A

�

y

�

for 0 < t � r ; x

�

(0) = 0

with r = 1=�. In this method we have g

�

(�) = (1 � e

��=�

)=�. Using the identities

d

d�

g

�

(�) = �

1

�

2

e

��=�

=

1

�

2

(1� �g

�

(�))

we obtain that for the method of asymptotical regularization there holds

d

R

(�) = d

EG

(�) = d

ME

(�) = d

D

(�) :
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From the identity d

D

(�) = d

ME

(�) and the monotonicity property of our ME rule we

conclude that for the method of asymptotical regularization the best constant C in the

D principle is C = 1:

Theorem 2.3. Let A

�

y

�

6= 0, let x

�

�

the regularized solution obtained by the method

of asymptotical regularization and let �

D

the regularization parameter of the D principle

with C = 1. Then

kx

�

�

D

� x

y

k < kx

�

�

� x

y

k for all � > �

D

:

From the identity d

R

(�) = d

EG

(�) = d

ME

(�) = d

D

(�) we conclude that all results

known for the D principle (see, e.g., [4, 38, 39]) are also true for the R rule, the EG

rule and the ME rule, respectively. Exploiting the monotonicity property of our ME rule

we obtain order optimal error bounds for kx

�

�

� x

y

k with � chosen by the ME rule, or

equivalently, the R rule, the EG rule or the D principle, respectively.

Theorem 2.4. Assume x

y

= (A

�

A)

p=2

w with kwk � E. Let x

�

�

the regularized

solution obtained by the method of asymptotical regularization and let � be chosen by

the ME rule. Then for all p 2 (0;1) the order optimal error estimate (2.8) holds true

with 

�

� 0:6382 and 

p=2

= (p=(2e))

p

.

Proof. Let us introduce the two operators

K

�

= I �A

�

Ag

�

(A

�

A) ;

~

K

�

= I �AA

�

g

�

(AA

�

) :

Then we obtain from (2.1)

x

�

�

� x

y

= �K

�

x

y

+ g

�

(A

�

A)A

�

(y

�

�Ax

y

) ; (2.9)

Ax

�

�

� y

�

= �

~

K

�

Ax

y

+

~

K

�

(Ax

y

� y

�

) : (2.10)

The method of asymptotical regularization is characterized by g

�

(�) = (1�e

��=�

)=�. For

this function there holds for arbitrary � > 0 the estimate

sup

0����

p

�jg

�

(�)j � 

�

=

p

� (2.11)

with 

�

� 0:6382 (see [38, 39]). From (2.9) and (2.11) we obtain

kx

�

�

� x

y

k � kK

�

x

y

k+ 

�

�=

p

� : (2.12)

Now we exploit the assumption x

y

= (A

�

A)

p=2

w with kwk � E and obtain from (2.3),

which holds with p

0

=1 and 

p

= (p=e)

2p

, the estimate

kK

�

x

y

k � 

p=2

�

p=2

E : (2.13)

For arbitrary D = D

�

� 0 and 0 � s � t there holds the moment inequality

kD

s

vk � kD

t

vk

s=t

kvk

1�s=t

(2.14)

(see, e.g., [22]). We apply this inequality with D = (A

�

A)

1=2

, v = K

�

w, s = p, t = p + 1

and obtain due to the relations D

p+1

K

�

w =

~

K

�

Ax

y

and kK

�

k � 1 that

kK

�

x

y

k = kD

p

K

�

wk

� kD

p+1

K

�

wk

p=(p+1)

kK

�

wk

1=(p+1)

� k

~

K

�

Ax

y

k

p=(p+1)

E

1=(p+1)

: (2.15)
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For � = �

ME

= �

D

we obtain due to the relations kAx

�

�

ME

� y

�

k = �, kAx

y

� y

�

k � �,

k

~

K

�

k � 1 and (2.10) that

k

~

K

�

ME

Ax

y

k � kAx

�

�

ME

� y

�

k+ k

~

K

�

ME

(Ax

y

� y

�

)k � 2� :

Consequently, (2.15) attains for � = �

ME

the form

kK

�

ME

x

y

k � (2�)

p=(p+1)

E

1=(p+1)

: (2.16)

Let � = �

�

be chosen such that the right hand sides of the estimates (2.13) and (2.16)

coincide, i.e., let �

�

= (

p=2

)

�2=p

E

�2=(p+1)

(2�)

2=(p+1)

. If �

ME

� �

�

, then the desired

estimate (2.8) follows from the monotonicity property kx

�

ME

� x

y

k � kx

�

�

� x

y

k (see

Theorem 2.3) and from the estimates (2.12), (2.13) with � = �

�

. If �

ME

> �

�

, then the

desired estimate (2.8) follows from (2.12) with � = �

ME

and from the estimates (2.16)

and 

�

�=

p

�

ME

< 

�

�=

p

�

�

. Hence, the proof is complete. 2

2.4. Newton's iteration for the ME rule in Tikhonov methods

Let us consider the methods of ordinary and iterated Tikhonov regularization (2.5). For

choosing the regularization parameter � according to the D principle, the RG rule and

the ME rule, respectively, the following nonlinear equations

d

D

(�) = C� ; d

RG

(�) = C� and d

ME

(�) = �

have to be solved numerically. For the iterative solution of these nonlinear equations the

change of the variable � by r = 1=� is reasonable since the functions

~

d

D

(r) := d

D

(1=r) ;

~

d

RG

(r) := d

RG

(1=r) ;

~

d

ME

(r) := d

ME

(1=r)

are monotonically decreasing and convex for all r > 0. These two properties guarantee

global monotone convergence, e.g., for Newton's iteration. For the function

~

d

ME

(r) we

prove the properties of monotonicity and convexity in Theorem 2.5. In order to prove

these properties for the functions

~

d

D

(r) and

~

d

RG

(r) we use the representations

~

d

D

(r) = kR

m

r

y

�

k ;

~

d

RG

(r) = kR

m+1=2

r

y

�

k

with R

r

= (I + rAA

�

)

�1

, exploit the two identities

d

dr

kR

k

r

y

�

k

2

= �2kkA

�

R

k+1=2

r

y

�

k

2

; (2.17)

d

dr

kA

�

R

k+1=2

r

y

�

k

2

= �(2k + 1)kAA

�

R

k+1

r

y

�

k

2

(2.18)

that hold true for arbitrary r > 0 and k � 0 (compare [35]) and obtain

~

d

0

D

(r) < 0 ;

~

d

0

RG

(r) < 0 ;

~

d

00

D

(r) > 0 and

~

d

00

RG

(r) > 0 : (2.19)

For the proof of (2.19) see also [12] and [4]. In our next theoremwe prove that the function

~

d

ME

(r) =

kR

m+1=2

r

y

�

k

2

kR

m+1

r

y

�

k
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has analogous properties.

Theorem 2.5. The function

~

d

ME

(r) is analytic, strictly monotonically decreasing

and strictly convex. For all r > 0 there hold the estimates

~

d

0

ME

(r) � �

mkA

�

R

m+1

r

y

�

k

2

kR

m+1

r

y

�

k

; (2.20)

~

d

00

ME

(r) �

m(m+ 1)kR

m+1=2

r

y

�

k

2

kAA

�

R

m+2

r

y

�

k

2

kR

m+1

r

y

�

k

3

: (2.21)

Proof. From [35] we have that (2.20) holds true and that

~

d

0

ME

is given by

~

d

0

ME

(r) =

(m+ 1)kR

m+1=2

r

y

�

k

2

kA

�

R

m+3=2

r

y

�

k

2

kR

m+1

r

y

�

k

3

�

(2m+ 1)kR

m+1

r

y

�

k

2

kA

�

R

m+1

r

y

�

k

2

kR

m+1

r

y

�

k

3

: (2.22)

In order to prove (2.21) we di�erentiate (2.22) as follows. We use (2.17), (2.18) with

k = m+ 1=2 and k = m+ 1, respectively, apply the identity

d

dr

kR

m+1

r

y

�

k

3

=

d

dr

(kR

m+1

r

y

�

k

2

)

3=2

=

3

2

kR

m+1

r

y

�

k(�2m� 2)kA

�

R

m+3=2

y

�

k

2

;

use the notations

t

1

:= kR

m+1=2

r

y

�

k

2

kA

�

R

m+3=2

r

y

�

k

4

t

2

:= kA

�

R

m+1

r

y

�

k

2

kA

�

R

m+3=2

r

y

�

k

2

kR

m+1

r

y

�

k

2

t

3

:= kR

m+1

r

y

�

k

4

kAA

�

R

m+3=2

r

y

�

k

2

t

4

:= kR

m+1=2

r

y

�

k

2

kR

m+1

r

y

�

k

2

kAA

�

R

m+2

r

y

�

k

2

and obtain

~

d

00

ME

(r)

kR

m+1

r

y

�

k

5

m+ 1

= 3(m+ 1)t

1

� 2(2m + 1)t

2

+ 2(2m + 1)t

3

� (2m+ 3)t

4

= 3(m+ 1)(t

1

� t

2

+ t

3

� t

4

) + (m� 1)(t

3

� t

2

) +mt

4

: (2.23)

We use the abbreviation D := (AA

�

)

1=2

, apply the identity

kzk

2

= kR

1=2

r

zk

2

+ rkDR

1=2

r

zk

2

(2.24)

with z = R

m+1

r

y

�

and z = DR

m+1

r

y

�

, respectively, and obtain

t

3

� t

2

= kR

m+1

r

y

�

k

2

�

kR

m+3=2

r

y

�

k

2

kAA

�

R

m+3=2

y

�

k

2

� kA

�

R

m+3=2

r

y

�

k

4

�

� 0 : (2.25)

Repeated use of (2.24) yields

kD

i

R

m+2�k=2

r

y

�

k

2

=

k

X

j=0

 

k

j

!

r

j

a

i+j

with a

j

= kD

j

R

m+2

r

y

�

k

2

:
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We apply this formula for k = 1; 2; 3 and i = 0; :::; 3� k and obtain

t

1

� t

2

+ t

3

� t

4

= (a

0

+ 3ra

1

+ 3r

2

a

2

+ r

3

a

3

)(a

1

+ ra

2

)

2

�(a

0

+ 2ra

1

+ r

2

a

2

)(a

1

+ 2ra

2

+ r

2

a

3

)(a

1

+ ra

2

)

+(a

0

+ 2ra

1

+ r

2

a

2

)

2

(a

2

+ ra

3

)

�a

2

(a

0

+ 2ra

1

+ r

2

a

2

)(a

0

+ 3ra

1

+ 3r

2

a

2

+ r

3

a

3

)

= (r

4

a

2

+ 3r

3

a

1

+ 3r

2

a

0

)(a

3

a

1

� a

2

2

)

+r(a

3=2

1

� a

1=2

3

a

0

)

2

+ 2ra

0

a

1

[(a

3

a

1

)

1=2

� a

2

] : (2.26)

From the Cauchy-Schwarz inequality we have

a

3

a

1

� a

2

2

= kD

3

R

m+2

r

y

�

k

2

kDR

m+2

r

y

�

k

2

� (D

3

R

m+2

r

y

�

;DR

m+2

r

y

�

)

2

� 0 ;

and due to (2.26) we obtain t

1

� t

2

+ t

3

� t

4

� 0. From this inequality, (2.25) and (2.23)

we conclude that

~

d

00

ME

(r)kR

m+1

r

y

�

k

5

� m(m+ 1)t

4

which is equivalent to (2.21). 2

Let us rewrite the derivative (2.22) into some equivalent form which is suitable for

numerical computations. We apply the identity r

�;k

= y

�

� Ax

�

�;k

= K

k

�

y

�

= R

k

r

y

�

with

K

�

= �(AA

�

+ �I)

�1

and obtain from (2.22)

~

d

0

ME

(r) =

(m+ 1)(r

�;m

; r

�;m+1

)(A

�

r

�;m+1

; A

�

r

�;m+2

)� (2m+ 1)kA

�

r

�;m+1

k

2

kr

�;m+1

k

2

kr

�;m+1

k

3

with � = 1=r. This representation shows that the evaluation of the derivative

~

d

0

ME

(r)

requires the computation of r

�;m

, r

�;m+1

and r

�;m+2

. Note that an e�cient evaluation of

the derivatives

~

d

0

D

(r) and

~

d

0

RG

(r) requires only the computation of r

�;m

and r

�;m+1

(see

[4]). As an alternative to Newton's method applied to the equation

~

d

ME

(r) � � = 0 one

could use the secant method in which the expensive evaluation of

~

d

0

ME

(r) is not necessary.

3. ITERATIVE REGULARIZATION METHODS

3.1. Iteration methods and the ME rule

For approximately solving linear ill-posed problems (1.1) with noisy data y

�

2 Y we

consider iteration methods of the general form

x

�

n

= x

�

n�1

+A

�

z

n�1

; n = 1; 2; ::: (3.1)

with z

n

2 X and initial guess x

�

0

= 0. The elements z

n

characterize the special iteration

method. For example, z

n

= �(y

�

� Ax

�

n

) with � 2 (0; 2=kAk

2

] leads to the well-known

Landweber iteration.

Iteration methods for approximately solving ill-posed problems are especially attrac-

tive for large scale problems (cf. [19]). Such problems arise e.g. in the �eld of parameter

identi�cation in di�erential equations. Exploiting ideas from control theory, in such iden-

ti�cation problems the elements A

�

z

n

can e�ectively be computed by solving one direct

problem and one associated adjoint problem.
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The iterates x

�

n

of the iteration process (3.1) generally diverge. Nevertheless these

iterates allow a stable approximation of x

y

provided the iteration is stopped after an

appropriate number of iteration steps. Two well-known a posteriori rules of choosing the

stopping index n = n(�) are:

1. Morozov's discrepancy principle [27, 38, 39]. By this principle (D principle) the

stopping index in (3.1) is chosen as the �rst index n = n

D

satisfying

d

D

(n) := kr

n

k � C� with r

n

= y

�

�Ax

�

n

and C � 1 : (3.2)

2. Rule of Engl and Gfrerer [3]. This rule may be applied to iteration methods (3.1)

where z

n

has the special form z

n

= h

n

(�

n

; AA

�

)r

n

with r

n

= y

�

�Ax

�

n

. Here h

n

is

some operator function which depends on �

n

2 IR and �

n

is allowed to depend on

the noisy data y

�

. In this rule (which we call EG rule) the stopping index in (3.1)

is chosen as the �rst index n = n

EG

satisfying

d

EG

(n) :=

(r

n

+ r

n+1

; h

n

(�

n

; AA

�

)r

n

)

1=2

(2�

n

)

1=2

� C� with C � 1 : (3.3)

Here �

n

is a constant with

�

n

= supfh

n

(�

n

; �) j 0 � � � kAk

2

g: (3.4)

In the monotone error rule (ME rule) for choosing the stopping index we focus our at-

tention on the monotonicity property (1.3). Our aim consists in searching for a largest

computable iteration number n

ME

for which (1.3) can be guaranteed. Exploiting (3.1) and

using the notation r

n

= y

�

�Ax

�

n

we obtain

kx

�

n

� x

y

k

2

� kx

�

n�1

� x

y

k

2

= kx

�

n�1

+A

�

z

n�1

� x

y

k

2

� kx

�

n�1

� x

y

k

2

= 2(x

�

n�1

� x

y

; A

�

z

n�1

) + kA

�

z

n�1

k

2

= (x

�

n�1

+ x

�

n

� 2x

y

; A

�

z

n�1

)

= (2(y

�

� y)� (r

n�1

+ r

n

); z

n�1

)

� 2kz

n�1

k

(

� �

(r

n�1

+ r

n

; z

n�1

)

2kz

n�1

k

)

: (3.5)

This estimate leads us to the following ME rule for iteration methods (3.1):

ME rule. Choose n

ME

as the �rst index n satisfying

d

ME

(n) :=

(r

n

+ r

n+1

; z

n

)

2kz

n

k

� � : (3.6)

By this a posteriori choice of the stopping index in iteration methods (3.1) the mono-

tonicity property (1.3) can be guaranteed:

Proposition 3.1. Let kz

n

k 6= 0 for n = 0; 1; 2; ::: and let n

ME

be chosen by the ME

rule (3.6). Then the monotonicity property (1.3) holds true.
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Proof. From the ME rule for iteration methods we have that d

ME

(n � 1) > � for

n = 1; 2; : : : ; n

ME

. Consequently, from (3.5) there follows for all n = 1; 2; : : : ; n

ME

that

kx

�

n

� x

y

k

2

� kx

�

n�1

� x

y

k

2

+ 2kz

n�1

k

�

� � d

ME

(n� 1)

�

< kx

�

n�1

� x

y

k

2

(3.7)

which completes the proof. 2

3.2. The ME rule in gradient type methods

Let us consider gradient type methods of the form (3.1) with z

n

= �

n

r

n

where r

n

=

y

�

� Ax

�

n

is the discrepancy and �

n

> 0 is some properly chosen stepsize. For such

methods the iteration (3.1) attains the form

x

�

n

= x

�

n�1

+ �

n�1

A

�

(y

�

�Ax

�

n�1

) ; n = 1; 2; ::: : (3.8)

Since in the EG rule h

n

(�

n

; �) = �

n

, for the constant �

n

of (3.4) we have �

n

= �

n

.

Consequently, the functions d

EG

(n) and d

ME

(n) of the EG- and ME rules, respectively,

attain the form

d

EG

(n) =

(r

n

+ r

n+1

; r

n

)

1=2

p

2

and d

ME

(n) =

(r

n

+ r

n+1

; r

n

)

2kr

n

k

: (3.9)

For gradient type methods (3.8) following properties are valid:

Theorem 3.2. Let P denote the orthoprojection of Y onto N(A

�

) = R(A)

?

, let

A

�

y

�

6= 0 and let �

n

be chosen such that

0 < �

n

�

kA

�

r

n

k

2

kAA

�

r

n

k

2

: (3.10)

Then for the iterates of (3.8) following properties are valid:

(i) The function d

D

(n) = kr

n

k is strictly monotonically decreasing and obeys

kr

n+1

k

2

� (r

n

; r

n+1

) < kr

n

k

2

:

(ii) The functions d

ME

(n) and d

EG

(n) are strictly monotonically decreasing and obey

d

D

(n+ 1) < d

ME

(n) < d

EG

(n) < d

D

(n) :

(iii) Let �

n

� c > 0 with some positive constant c, then

lim

n!1

d

ME

(n) = lim

n!1

d

EG

(n) = lim

n!1

d

D

(n) = kPy

�

k : (3.11)

(iv) If kPy

�

k < C�, then the stopping indices n

D

and n

EG

are well de�ned. For C = 1

also n

ME

is well de�ned and there holds

n

D

� 1 � n

ME

� n

EG

� n

D

:

(v) If kAx

�

n

� y

�

k � �, then

kx

�

n

� x

y

k < kx

�

n�1

� x

y

k :
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Proof. From (3.8) we conclude that r

n+1

= (I � �

n

AA

�

)r

n

. Consequently,

(a) (r

n

; r

n+1

) = kr

n

k

2

� �

n

kA

�

r

n

k

2

;

(b) kr

n+1

k

2

= kr

n

k

2

� 2�

n

kA

�

r

n

k

2

+ �

2

n

kAA

�

r

n

k

2

:

From (a), �

n

> 0 and A

�

y

�

6= 0 we obtain the right inequality of (i). Combining (a) and

(b) we have

kr

n+1

k

2

= (r

n

; r

n+1

)� �

n

kA

�

r

n

k

2

+ �

2

n

kAA

�

r

n

k

2

:

From this equation and assumption (3.10) we obtain that the left inequality of (i) holds

true. In order to prove the left inequality of (ii) we use the inequality 2ab < a

2

+ b

2

with

a 6= b and obtain with the help of the left inequality of (i) that

2kr

n

kkr

n+1

k < kr

n

k

2

+ kr

n+1

k

2

� kr

n

k

2

+ (r

n

; r

n+1

) ;

which is equivalent to d

D

(n + 1) < d

ME

(n). The middle and right inequalities of (ii) are

equivalent to (r

n

; r

n+1

) < kr

n

k

2

and follow from part (i). For proving (3.11) we proceed

according to (3.5) and obtain for arbitrary w 2 X and arbitrary iteration methods (3.8)

with �

n

> 0 that

kx

�

n

� wk

2

� kx

�

n�1

� wk

2

=

�

2(y

�

�Aw)� (r

n�1

+ r

n

); �

n�1

r

n�1

�

� 2�

n�1

kr

n�1

k

n

ky

�

�Awk � d

ME

(n� 1)

o

: (3.12)

For iteration methods (3.8) with stepsizes �

n

satisfying (3.10) there holds

kr

n

k

2

� kr

n+1

k

2

= �

n

�

2kA

�

r

n

k

2

� �

n

kAA

�

r

n

k

2

�

� �

n

kA

�

r

n

k

2

:

Passing to the limit on both sides yields due to �

n

� c > 0 that lim

n!1

kA

�

r

n

k = 0.

From y

�

= Ax

�

n

+ r

n

and the Cauchy-Schwarz-inequality we have

kr

n

k

2

� kAw � y

�

k

2

= 2

�

r

n

; Aw�Ax

�

n

�

� kAx

�

n

�Awk

2

� 2kA

�

r

n

kkx

�

n

� wk : (3.13)

Now we will use a contradicition argument and assume that lim

n!1

d

D

(n) > kPy

�

k.

Under this condition there exists some element w 2 X with the property that

lim

n!1

kr

n

k > kAw� y

�

k : (3.14)

From (3.14) and (i) we have kr

n

k > kAw � y

�

k for all n 2 IN. This property provides

together with (3.12) and (ii) that

kx

�

n

� wk

2

� kx

�

n�1

� wk

2

< 2�

n�1

kr

n�1

k fkr

n

k � d

ME

(n� 1)g � 0 :

Hence, kx

�

n

� wk is bounded by kwk for all n 2 IN. Passing to the limit on both sides

of (3.13) provides due to kx

�

n

� wk � kwk and lim

n!1

kA

�

r

n

k = 0 that lim

n!1

kr

n

k �

kAw�y

�

k. This contradicts (3.14) and shows that our assumption lim

n!1

d

D

(n) > kPy

�

k

cannot hold true. Hence, due to (ii) we obtain (3.11). Assertion (iv) follows from (3.11),

the de�nition of the stopping rules and (ii). In order to prove (v) we use the �rst part of

(3.7), property (ii) as well as the assumption d

D

(n) � � and obtain

kx

�

n

� x

y

k

2

� kx

�

n�1

� x

y

k

2

� 2kz

n�1

kf� � d

ME

(n� 1)g

< 2kz

n�1

kf� � d

D

(n)g

� 0 ;
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which �nishes the proof. 2

Remark 3.1. The limit relation (3.11) can not only be guaranteed for strictly positive

stepsizes �

n

� c > 0, but also for stepsizes tending to zero not too fast and satisfying

0 � �

i

�

1

kAk

2

and lim

n!1

n

X

i=0

�

i

=1 :

For the proof of this result we use the identity r

n+1

= (I � �

n

AA

�

)r

n

which gives

r

n+1

= r

n

(AA

�

)y

�

with r

n

(�) =

n

Y

i=0

(1 � �

i

�) :

Hence, for n!1 we have for all � 2 (0; kAk

2

]

jr

n

(�)j ! 0 , ln

n

Y

i=0

j1� �

i

�j ! �1 ,

n

X

i=0

ln j1 � �

i

�j ! �1 :

Using the estimate ln j1 � �j � �� for � 2 [0; 1] with � = �

i

� we obtain the result that

for 0 � �

i

� 1=kAk

2

there holds jr

n

(�)j ! 0 provided

P

n

i=0

�

i

!1. Finally we conclude

that from jr

n

(�)j ! 0 for all � 2 (0; kAk

2

] there follows lim

n!1

kr

n

k = kPy

�

k and the

proof is complete.

Remark 3.2. Part (v) of Theorem 3.2 shows that the iteration (3.8) should not be

stopped as long as kAx

�

n

�y

�

k � � holds. Let us modify the D principle as follows: Choose

n = n

D

as the �rst index n satisfying

kAx

�

n+1

� y

�

k < C� with C � 1 :

Let n

1

and n

2

the stopping indices of this modi�ed D principle with C = C

1

and C = C

2

,

respectively. If 1 � C

1

� C

2

, then, since d

D

(�) is monotonically decreasing there follows

n

1

� n

2

, and due to part (v) of Theorem 3.2 we obtain kx

�

n

1

� x

y

k � kx

�

n

2

� x

y

k. Hence,

the best possible choice for the constant C in this modi�ed D principle is C = 1.

Before we will study some special methods that �t into the framework of Theorem 3.2

let us derive some useful inequality that is helpful for checking condition (3.10).

Proposition 3.3. Let D 2 L(Y; Y ), D = D

�

� 0 and � � 0. Then for all v 2 Y

kD

�

vkkDvk � kD

�+1

vkkvk : (3.15)

Proof. We apply the moment inequality (2.14), �rst with s = � and t = �+1, second

with s = 1 and t = � + 1 and obtain the inequalities

kD

�

vk � kD

�+1

vk

�

�+1

kvk

1

�+1

and kDvk � kD

�+1

vk

1

�+1

kvk

�

�+1

:

We multiply both inequalities and obtain (3.15). 2

Now we are ready to study some special gradient type methods (3.8) that �t into the

framework of Theorem 3.2. In the methods M3 { M5 below we assume that y

�

is not an

eigenelement of the operator AA

�

since in the opposite case there follows r

1

= 0 and the

stepsizes �

n

, n = 1; 2; ::: are not de�ned.
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Method M1: Landweber's method with �

n

= � 2 (0; 1=kAk

2

]. This method may actu-

ally be applied with stepsizes �

n

= � 2 (0; 2=kAk

2

), see [1, 4, 5, 13, 17, 23, 25, 28,

30, 38, 39]. However, due to the inequality kAA

�

r

n

k � kAkkA

�

r

n

k we realize that

condition (3.10) and hence the results of Theorem 3.2 hold true for � 2 (0; 1=kAk

2

].

Method M2: Nonstationary Landweber's method. This method is characterized by

(3.8) with variable �

n

2 [c; 1=kAk

2

] and c > 0, see [32]. As in method M1 we

conclude that condition (3.10) and hence the results of Theorem 3.2 hold true for

�

n

2 [c; 1=kAk

2

].

Method M3: Steepest descent method (see [1, 2, 7, 9, 10, 11, 16, 20, 22, 31, 32]). This

method is characterized by (3.8) with �

n

= kA

�

r

n

k

2

=kAA

�

r

n

k

2

. Since this stepsize

satis�es (3.10), the results of Theorem 3.2 hold true for this method.

Method M4: �-processes with stepsizes �

n

= kD

�+1

r

n

k

2

=kD

�+2

r

n

k

2

, D = (AA

�

)

1=2

and � � 0. These methods may actually be applied with � � �1, see [10, 16, 22,

31, 32]. However, assumption (3.10) holds true only for � � 0. In order to check

(3.10) we apply inequality (3.15) with D = (AA

�

)

1=2

, v = (AA

�

)

1=2

r

n

and � = �

and obtain the inequality kD

�+1

r

n

kkD

2

r

n

k � kD

�+2

r

n

kkDr

n

k which gives �

n

�

kDr

n

k=kD

2

r

n

k. Since furthermore �

n

� kD

�+1

r

n

k

2

=(kDk

2

kD

�+1

r

n

k

2

) = 1=kAk

2

we obtain

1

kAk

2

� �

n

�

kA

�

r

n

k

2

kAA

�

r

n

k

2

(3.16)

and hence (3.10). Since the application of (3.15) requires � � 0 we realize that

Theorem 3.2 holds true for �-processes with � � 0.

Method M5: Method (3.8) with �

n

= maxfkD

�+2

r

n

k

2

= (kDk

4

kD

�+1

r

n

k

2

) ; �g where

D = (AA

�

)

1=2

, � 2 (0; 1=kAk

2

] and � � �1 (see [16, 32]). For this method there

holds

� � �

n

� max

(

kDk

2

kD

�+1

r

n

k

2

kDk

4

kD

�+1

r

n

k

2

; �

)

=

1

kAk

2

:

From this estimate it follows as in method M1 that condition (3.10) and therefore

the results of Theorem 3.2 hold true.

Note that method M3 is a special case of �-processes with � = 0. In this method the

stepsize �

n

minimizes the functional g(�

n

) := kr

n+1

k

2

= k(I � �

n

AA

�

)r

n

k

2

.

The results of Theorem 3.2 can be used to establish convergence- and convergence rate

results for the above discussed a posteriori stopping rules in iteration methods M1 { M5.

Theorem 3.4. Assume A

�

y

�

6= 0 and kPy

�

k < �. Let x

�

n

the regularized approxima-

tion obtained by one of the methods M1 { M5 and let n

D

, n

EG

and n

ME

the stopping

indices according to the discrepancy principle with C � 1, the EG rule (3.3) with C � 1

and the ME rule (3.6), respectively. Then for all n 2 fn

D

; n

ME

; n

EG

g there holds:

(i) kx

�

n

� x

y

k ! 0 for � ! 0.

(ii) If x

y

2 R((A

�

A)

p=2

), then

kx

�

n

� x

y

k = O(�

p=(p+1)

) for all p > 0 :
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Proof. First, let us discuss the case C > 1. In this case the proof for n = n

D

is known

from the literature, see [38] for method M1, [31, 32] for methods M2{M5 and [9, 10] for

method M3. Let n

ME;C

the stopping index of the ME rule (3.6) with � replaced by C�.

From the validity of Theorem 3.4 for n = n

D

and part (ii) of Theorem 3.2 we obtain that

assertions (i), (ii) are valid for n

EG

and n

ME;C

as well. Second, let us consider the case

C = 1. From the monotonicity of d

ME

(n) we obtain that n

ME;C

� n

ME;1

. Consequently,

due to Proposition 3.1 there follows

kx

�

n

ME;1

� x

y

k � kx

�

n

ME;C

� x

y

k :

Hence, the assertions (i) and (ii) of the theorem are true for n = n

ME;1

. From this result

and part (iv) of Theorem 3.2 we conclude that assertions (i) and (ii) of the theorem are

also valid for n = n

D

and n = n

EG

. 2

Some weaker results compared with the results of Theorems 3.2 and 3.4 can be proved

for method M4 with � 2 [�1; 0). This class of methods contains for � = �1 the minimal

error method in which the stepsize �

n

is given by �

n

= kr

n

k

2

=kA

�

r

n

k

2

, see [1, 2, 6, 9,

10, 11, 16, 22, 31, 32]. In the minimal error method the stepsize �

n

minimizes the norm

kx

�

n+1

�A

�1

y

�

k provided A

�1

y

�

exists. For this method there holds (r

n

; r

n+1

) = 0 which

shows that the left inequality of part (i) of Theorem 3.2 generally does not hold.

Theorem 3.5. Let A

�

y

�

6= 0. Then in method M4 with � 2 [�1; 0) following

properties are valid:

(i) For all n 2 IN there holds

1

2

d

D

(n) �

1

p

2

d

EG

(n) � d

ME

(n) < d

EG

(n) < d

D

(n) :

(ii) Denote by n

ME;C

the stopping index of the ME rule with � replaced by C�. Then,

n

ME;C

is well de�ned for C > 1. In addition, n

EG;C

:= n

EG

is well de�ned for

C >

p

2 and n

D;C

:= n

D

is well de�ned for C > 2. For arbitrary C > 1 there holds

n

D;2C

� n

EG;

p

2C

� n

ME;C

� n

EG;C

� n

D;C

: (3.17)

(iii) For n = n

D;2C

, n = n

EG;

p

2C

and n = n

ME;C

with C > 1 there holds

kx

�

n

� x

y

k ! 0 for � ! 0 :

Proof. By elementary computations it can be shown that the �rst two inequalities of

assertion (i) are equivalent to (r

n

; r

n+1

) � 0. This inequality, however, is equivalent to

�

n

�

kr

n

k

2

kA

�

r

n

k

2

and follows from (3.15) with � = �+1 and v = r

n

. The �nal two inequalities of assertion

(i) are both equivalent to (r

n

; r

n+1

) < kr

n

k

2

. This inequality, however, holds for arbitrary

stepsize �

n

> 0 since due to r

n+1

= [I � �

n

AA

�

]r

n

and A

�

y

�

6= 0 we have

(r

n

; r

n+1

) = kr

n

k

2

� �

n

kA

�

r

n

k

2

< kr

n

k

2

:
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Now let us prove indirectly that for C > 1 there exists a �nite stopping index n

ME;C

. For

this aim we assume that d

ME

(n) > C� for all n 2 IN. Then, due to (3.5), kx

�

n

� x

y

k <

kx

�

n�1

� x

y

k, and the limit lim

n!1

kx

�

n

� x

y

k exists. We summize the inequalities (3.5)

with z

n

= �

n

r

n

for all n � 1 and obtain due to x

�

0

= 0 that

kx

y

k

2

� lim

n!1

kx

�

n

� x

y

k

2

� 2

1

X

n=0

�

n

kr

n

k fd

ME

(n)� �g :

Since the right hand side is �nite there follows that lim

n!1

�

n

kr

n

k fd

ME

(n)� �g = 0. Due

to �

n

� 1=kAk

2

, kr

n

k > d

ME

(n) (compare (i)) and the assumption d

ME

(n) > C� there

follows

�

n

kr

n

k �

kr

n

k

kAk

2

>

d

ME

(n)

kAk

2

>

C�

kAk

2

:

Consequently, lim

n!1

fd

ME

(n)� �g = 0. This contradicts our assumption d

ME

(n) > C�

for all n 2 IN and proves that there has to exist some �nite stopping index n

ME;C

for

C > 1. Hence, due to the �rst two inequalities of (i) there follows that n

EG;C

is well

de�ned for C >

p

2 and n

D;C

is well de�ned for C > 2. Now the proof of (3.17) follows

from the de�nition of the corresponding stopping rules and (i). In order to prove (iii) we

conclude from n

D;2C

� n

EG;

p

2C

� n

ME;C

and Proposition 3.1 that

kx

�

n

ME;C

� x

y

k � kx

�

n

EG;

p

2C

� x

y

k � kx

�

n

D;2C

� x

y

k :

Since assertion (iii) holds true for n

D;2C

with C > 1 (see [10]), we conclude that (iii) holds

also true for n

EG;

p

2C

and n

ME;C

with C > 1. 2

Remark 3.3. The estimate (3.5) which led us to the ME rule can also be exploited

for �nding stepsizes �

n

> 0 in iteration methods (3.8) which guarantee that x

�

n+1

is a

better approximation for x

y

than x

�

n

. Here the stepsize �

n

may not only depend on y

�

,

but also on the noise level �. Exploiting (3.7), (3.6) and r

n+1

= (I � �

n

AA

�

)r

n

we obtain

for �

n

> 0

kx

�

n+1

� x

y

k

2

� kx

�

n

� x

y

k

2

< 2�

n

kr

n

k

(

� � kr

n

k+ �

n

kA

�

r

n

k

2

2kr

n

k

)

: (3.18)

The right hand side of (3.18) is negative for kr

n

k > � and 0 < �

n

<

2kr

n

k

kA

�

r

n

k

2

(kr

n

k � �)

which shows that for such stepsizes the element x

�

n+1

is a better approximation for x

y

than x

�

n

. Minimizing the right hand side of (3.18) with respect to �

n

yields

�

n

=

kr

n

k

kA

�

r

n

k

2

(kr

n

k � �) :

Substituting into (3.18) shows (see also [1], p. 69) that for this stepsize the improvement

of the squared error can be estimated by

kx

�

n+1

� x

y

k

2

� kx

�

n

� x

y

k

2

< �

kr

n

k

2

kA

�

r

n

k

2

(kr

n

k � �)

2

:

Some gradient type methods that do not �t into the class of methods (3.8) are conjugate

gradient methods. The conjugate gradient method for the normal equations A

�

Ax = A

�

y

�

(see [1, 2, 9, 10, 11]) is known as powerful method for the approximate solution of ill-posed
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problems. The advantage of this method over methods of type (3.8) consists in the fact

that the stopping index is generally much smaller. In the standard variant of this method

(see [1], p. 51) the regularized approximations x

�

n

have the form

x

�

n+1

= x

�

n

+ �

n

p

n

; p

n

= A

�

r

n

+ 

n�1

p

n�1

; r

n

= y

�

�Ax

�

n

;

�

n

=

(A

�

r

n

; p

n

)

kAp

n

k

2

; 

n�1

=

kA

�

r

n

k

2

kA

�

r

n�1

k

2

; p

0

= A

�

r

0

:

It can easily be realized that this method �ts into the framework of methods (3.1). Hence,

the ME rule (3.6) for choosing an appropriate stopping index can be applied. In [1] it is

shown that for this method the ME function (3.6) has the form

d

ME

(n) =

kr

n

k

2

+ kr

n+1

k

2

2

�

n

P

i=0

1=kA

�

r

i

k

2

n

P

i=0

kr

i

k=kA

�

r

i

k

2

:

This representation for d

ME

(n) has been used in [1] to prove that the regularized approx-

imation x

�

n

ME

converges to x

y

for � ! 0. Unfortunately, we don't know results concerning

convergence rates although such results are known for the D principle (see [4]).

3.3. The ME rule in implicit iteration methods

Let us consider implicit iteration methods of the form (3.1) with z

n

= h

n

(�

n

; AA

�

)r

n

=

(�

n

I + AA

�

)

�1

r

n

where r

n

= y

�

� Ax

�

n

is the discrepancy and �

n

> 0 is some suitably

chosen real number. For such methods the iteration (3.1) attains the form

x

�

n

= x

�

n�1

+A

�

(AA

�

+ �

n�1

I)

�1

(y

�

�Ax

�

n�1

)

= (A

�

A+ �

n�1

I)

�1

(�

n�1

x

�

n�1

+A

�

y

�

) ; n = 1; 2; ::: : (3.19)

For methods (3.19) the constant �

n

in (3.4) is given by �

n

= �

�1

n

. From (3.19) we obtain

that r

n

= �

n�1

(AA

�

+ �

n�1

I)

�1

r

n�1

. Consequently, the element z

n

= (�

n

I + AA

�

)

�1

r

n

has the form z

n

= �

�1

n

r

n+1

and the functions d

EG

(n) and d

ME

(n) of the EG- and ME

rules of Subsection 3.1 attain the form

d

EG

(n) =

(r

n

+ r

n+1

; r

n+1

)

1=2

p

2

and d

ME

(n) =

(r

n

+ r

n+1

; r

n+1

)

2kr

n+1

k

; (3.20)

respectively. For implicit iteration methods with arbitrary positive parameters �

n

> 0

following properties are valid:

Theorem 3.6. Let A

�

y

�

6= 0 and �

n

> 0 arbitrary. Then for the iterates of (3.19)

following properties are valid:

(i) The function d

D

(n) = kr

n

k is strictly monotonically decreasing and obeys

kr

n+1

k

2

< (r

n

; r

n+1

) < kr

n

k

2

:

(ii) The functions d

ME

(n) and d

EG

(n) are strictly monotonically decreasing and obey

(a) d

D

(n+ 1) < d

EG

(n) < d

ME

(n) < d

D

(n)

(b) lim

n!1

d

ME

(n) = lim

n!1

d

EG

(n) = lim

n!1

d

D

(n)
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(iii) Let lim

n!1

d

D

(n) < C� and C � 1. Then the stopping indices n

D

and n

ME

are

well de�ned. If C = 1, then also n

ME

is well de�ned and there holds

n

D

� 1 � n

EG

� n

ME

� n

D

:

(iv) If kAx

�

n

� y

�

k � �, then

kx

�

n

� x

y

k < kx

�

n�1

� x

y

k :

Proof. From (3.19) we conclude that r

n

= (�

�1

n

AA

�

+ I)r

n+1

. Consequently,

(a) (r

n

; r

n+1

) = kr

n+1

k

2

+ �

�1

n

kA

�

r

n+1

k

2

;

(b) kr

n

k

2

= kr

n+1

k

2

+ 2�

�1

n

kA

�

r

n+1

k

2

+ �

�2

n

kAA

�

r

n+1

k

2

:

From (a), (b) and A

�

y

�

6= 0 we obtain assertion (i). From (3.20), the Cauchy-Schwarz

inequality, the triangle inequality and inequality (i) we obtain

d

ME

(n) :=

(r

n

+ r

n+1

; r

n+1

)

2kr

n+1

k

�

1

2

�

kr

n

k+ kr

n+1

k

�

< kr

n

k = d

D

(n) :

Hence, the right inequality of (ii) holds true. The two other inequalities of (ii) are equiva-

lent to kr

n+1

k

2

< (r

n

; r

n+1

) and follow from part (i). Now part (b) of (ii) is a consequence

of part (a) of (ii) and assertion (iii) of the theorem is a consequence of assertion (ii). The

proof of (iv) can be done in analogy to the proof of part (iv) of Theorem 3.2. 2

As in explicit iteration methods, property (iv) of the theorem shows that also in

implicit iteration methods (3.19) with arbitrary �

n

> 0 the iteration should not be stopped

as long as kAx

�

n

�y

�

k � � holds. Here the same discussion as in Remark 3.2 can be made.

Further note that the limit lim

n!1

d

D

(n) always exists since d

D

(n) is monotonically

decreasing and bounded by zero. However, under the additional condition

lim

n!1

n

X

j=0

1

�

j

=1 ; (3.21)

which is necessary for convergence x

n

! x

y

for n ! 1 in the case of exact data, it can

be shown that lim

n!1

d

D

(n) = kPy

�

k where P denotes the orthoprojection of Y onto

N(A

�

) = R(A)

?

(cf., e.g., [18]). Condition (3.21) excludes that the parameter sequence

f�

n

g is growing faster than the sequence fn

�

g with � > 1.

Our next aim in this section is to establish convergence- and convergence rate results

for implicit iteration methods (3.19) provided the stopping index is chosen from the D

principle, the EG rule and the ME rule, respectively. For the D principle there is known

that the proof of convergence rates can be done under the additional assumption

1

�

n

� c

n�1

X

j=0

1

�

j

for some c > 0 (3.22)

(see [18]). These results and the results of Theorem 3.6 allow the proof of convergence-

and convergence rate results for the EG- and ME rules.

Theorem 3.7. Assume A

�

y

�

6= 0, kPy

�

k < � and (3.21). Let x

�

n

the regularized

approximation obtained by (3.19) and let n

D

, n

EG

and n

ME

the stopping indices according

to the discrepancy principle with C � 1, the EG rule (3.3) with C � 1 and the ME rule

(3.6), respectively. Then for all n 2 fn

D

; n

ME

; n

EG

g there holds:
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(i) kx

�

n

� x

y

k ! 0 for � ! 0.

(ii) If x

y

2 R((A

�

A)

p=2

) and (3.22) hold, then

kx

�

n

� x

y

k = O(�

p=(p+1)

) for all p > 0 :

Proof. The proof is along the lines of the proof of Theorem 3.4 and uses that for

C > 1 the results of the theorem for n = n

D

are known from [18]. 2

Now let us study some special implicit iteration methods (3.19) that �t into the frame-

work of Theorem 3.7.

Method M6: Stationary implicit iteration method (see [13, 24, 28, 30, 38, 39]). This

method is characterized by (3.19) with �xed �

n

:= � > 0. Obviously, condition

(3.21) holds and condition (3.22) is satis�ed with c = 1. Hence the results of

Theorem 3.7 hold true for this method.

Method M7: Nonstationary implicit iteration method with �

n

= �q

n

, � > 0 and q 2

(0; 1). For this method condition (3.21) can easily be checked and condition (3.22)

holds true with c = 1=q (see [18]). Hence, Theorem 3.7 applies for this method.

Method M8: Nonstationary implicit iteration method with �

n

2 [c

1

; c

2

], 0 < c

1

< c

2

.

For this method (see [32]) property (3.21) is valid due to �

n

� c

2

. From

1

�

n

�

1

c

1

�

1

c

1

�

c

2

n

n�1

X

j=0

1

�

j

we obtain (3.22) with c = c

2

=c

1

. Consequently, Theorem 3.7 applies for this method.

Method M9: Nonstationary implicit iteration method with

�

n

= max

(

kD

�+2

r

n

k

2

kD

�+1

r

n

k

2

; �

)

; � > 0 ; � � �1

and D = (AA

�

)

1=2

. A modi�cation of this method with � = �1 and without lower

bound � has been studied in [29, 33, 37]. Method M9 (see [16, 32, 37]) is a special

case of method M8 with

� � �

n

� max

n

kDk

2

; �

o

: (3.23)

The inequalities (3.23) follow from the de�nition of �

n

. Hence, the results of Theo-

rem 3.7 hold true for this method.

4. NUMERICAL EXPERIMENTS

In this section we summarize some of our numerical results for integral equations of the

�rst kind

(Ax)(s) =

Z

1

0

K(s; t)x(t) dt = y(s) ; 0 � s � 1 (4.1)

in a L

2

-space setting with X = Y = L

2

(0; 1). We discretized problem (4.1) by the

collocation method with 100 piecewise constant spline basis functions on a uniform mesh.
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Table 1: Errors in the method of ordinary Tikhonov regularization

� e

D

e

RG

e

ME

e

D

=�

1=2

e

RG

=�

3=5

e

ME

=�

3=5

10

�1

:05878 :05982 :05355 .1859 .2381 .2132

10

�2

.02332 .01905 .01710 .2332 .3019 .2710

10

�3

.00896 .00589 .00527 .2833 .3716 .3325

10

�4

.00338 .00183 .00163 .3380 .4597 .4094

10

�5

.00119 .00055 .00049 .3763 .5500 .4900

Instead of y randomly perturbed data y

�

with ky � y

�

k � � have been used. Our test

problem is taken from [26] and corresponds to equation (4.1) with

K(s; t) =

8

<

:

0 for t � s

1 for s < t ;

y(s) =

1� cos(�s)

�

; x

y

(t) = sin(�t) :

For this test problem we have x

y

2 R((A

�

A)

p=2

) for all p 2 (0; 3=2).

In a �rst experiment the discretized problem was regularized by the method of ordinary

Tikhonov regularization (2.5) with m = 1. The regularization parameter � has been

chosen according to the ME rule, the RG rule and the D principle, respectively. For C

we have used the constant C = 1. In Table 1 the errors

e

D

= kx

�

�

D

� x

y

k ; e

RG

= kx

�

�

RG

� x

y

k and e

ME

= kx

�

�

ME

� x

y

k

are given. The results in Table 1 verify the theoretical results of the estimate (2.8) of

Theorem 2.2 which tells us that for x

y

2 R((A

�

A)

p=2

) with p � 2 there holds e

ME

=

O(�

p=(p+1)

). Table 1 also illustrates the well known results that for 1 � p � 2 there holds

e

RG

= O(�

p=(p+1)

) and e

D

= O(�

1=2

). In addition we observed that always e

ME

< e

RG

holds true.

In a second experiment we solved the discretized problem by one explicit and one

implicit iteration method, namely by Landweber's method with � = 1=kAk

2

and by the

stationary implicit iteration method with � = 1. Both iterations were stopped with index

n

�

+10, where n

�

is the �rst n with kx

�

n+1

�x

y

k � kx

�

n

� x

y

k. In all experiments the �nal

inequality appeared to be true for all n = n

�

+ 1; : : : ; n

�

+ 10. In Table 2 comparisons of

the indices n

ME

, n

�

and the corresponding errors

e

ME

= kx

n

ME

� x

y

k and e

�

= kx

n

�

� x

y

k

are given. Note that in these and in all other numerical experiments we observed that

n

ME

� n

�

and n

ME

= n

D

or n

ME

= n

D

� 1, which is in agreement with part (iv) of

Theorem 3.2 and part (iii) of Theorem 3.6. We made some further experiments in which

instead of random perturbations some special perturbed data y

�

have been used. In these

experiments we observed essentially smaller quotients (n

�

�n

ME

)=n

�

compared with those

which follow from Table 2. For some further numerical experiments for comparing the

ME rule with the RG rule and the D principle in the method of ordinary Tikhonov

regularization see [14, 16, 21, 35].
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Table 2: Indices n

ME

, n

�

and errors e

ME

, e

�

in iteration methods

Landweber's method Implicit iteration method

� n

ME

n

�

e

ME

e

�

n

ME

n

�

e

ME

e

�

10

�1

15 16 :0630 :0621 32 41 :1131 :1060

10

�2

38 67 .0453 .0400 103 166 .0406 .0356

10

�3

160 332 .0137 .0111 495 750 .0097 .0087

10

�4

947 1545 .0033 .0030 2422 3741 .0031 .0029

10

�5

4794 8643 .0009 .0008 12951 19667 .0008 .0008
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