THE MONOTONE ERROR RULE FOR PARAMETER CHOICE IN REGULARIZATION METHODS ¹

UNO HÄMARIK

Institute of Applied Mathematics, University of Tartu, Liivi 2, 50409 Tartu, Estonia E-mail: Uno.Hamarik@math.ut.ee

ULRICH TAUTENHAHN University of Applied Sciences Zittau/Görlitz, Department of Mathematics P.O.Box 261, 02763 Zittau, Germany E-mail: u.tautenhahn@hs-zigr.de

Abstract. We consider ill-posed problems Au = f with minimum-norm solution u^{\dagger} . We suppose that instead of f noisy data f_{δ} are available with $||f - f_{\delta}|| \leq \delta$ and that $A \in \mathcal{L}(H, F)$ is a linear bounded operator between Hilbert spaces H and F with non-closed range R(A). Regularized solutions u_r are obtained by a general regularization scheme which includes Tikhonov regularization $u_r = (A^*A + r^{-1}I)^{-1}A^*f_{\delta}$, iterative regularization parameter $r = r(\delta)$ which we call monotone error rule (ME rule). In this rule we choose $r = r_{ME}$ as the largest r-value for which we are able to prove that the error $||u_r - u^{\dagger}||$ is monotonically decreasing for $r \in [0, r_{ME}]$. Our rule leads to order optimal error bounds. Numerical results are given.

1. Introduction

In this paper we consider linear ill-posed problems

$$Au = f \tag{1}$$

where $A \in \mathcal{L}(H, F)$ is a bounded operator with non-closed range R(A) and H, F are infinite dimensional real Hilbert spaces with inner products (\cdot, \cdot) and norms $\|\cdot\|$. We are interested in the minimum-norm solution u^{\dagger} of problem (1) and assume that instead of *exact* data f there are given *noisy* data $f_{\delta} \in F$ with $\|f - f_{\delta}\| \leq \delta$ and known noise level δ .

Ill-posed problems (1) arise in a wide variety of problems in applied sciences. For their stable numerical solution regularization methods are necessary, see [2, 5, 10]. A large class of regularization methods has the form

$$u_r = g_r(A^*A)A^*f_\delta . (2)$$

¹Thanks are due to the organizers of the 3rd European Conference on Numerical Mathematics and Advanced Applications, Jyväskylä, Finland, July 26 – 30 1999, and especially for the opportunity to present this paper.

Published in: ENUMATH 99. Proc. 3rd European Conf. on Num. Math. and Advanced Appl., eds. P. Neittaanmäki et al. (World Scientific, Singapore, 2000), pp. 518 – 525.

Here $g_r(\lambda) : [0, a] \to \mathbb{R}$ with $a = ||A^*A||$ is a family of piecewise continuous functions depending on a positive regularization parameter r > 0, and the operator function g_r is defined according to $g_r(A^*A) = \int_0^a g_r(\lambda) \, dE_\lambda$ where $A^*A = \int_0^a \lambda \, dE_\lambda$ is the spectral decomposition of A^*A . For the function g_r which characterizes the special regularization method we suppose:

Assumption (A1). There exist positive constants γ_* , γ_p and p_0 such that the function $g_r(\lambda) : (0, a] \to \mathbb{R}$ with $||A^*A|| \le a$ satisfies the estimates

(i) $\sup_{0 \le \lambda \le a} \sqrt{\lambda} |g_r(\lambda)| \le \gamma_* \sqrt{r} ,$

(ii)
$$\sup_{0 \le \lambda \le a} \lambda^p |1 - \lambda g_r(\lambda)| \le \gamma_p r^{-p} \quad \text{for all} \quad p \in (0, p_0],$$

$$(\mathrm{iii}) \qquad |1 - \lambda g_{r_1}(\lambda)| \le |1 - \lambda g_{r_2}(\lambda)| \quad \text{for} \quad 0 \le \lambda \le a \quad \text{and} \quad 0 \le r_2 \le r_1 \; .$$

The (maximal) number p_0 in Assumption (A1) is called *qualification* [10] of the regularization method (2).

One of the main problems in applying regularization methods is the proper choice of the regularization parameter $r = r(\delta)$. Due to (ii) and (iii), in the case of *exact* data we have monotone convergence $||u_r - u^{\dagger}|| \to 0$ for $r \to \infty$. In the case of *noisy* data the monotone decrease of the error $||u_r - u^{\dagger}||$ can only be guaranteed for small r. Typically $||u_r - u^{\dagger}||$ diverges for $r \to \infty$. Therefore a rule for the proper choice of r is necessary. In this paper we study a new rule in which $r = r_{ME}(\delta)$ is chosen as the largest r-value for which we are able to prove (under the assumption $||f - f_{\delta}|| \leq \delta$) that the error $||u_r - u^{\dagger}||$ is monotonically decreasing for $r \in [0, r_{ME}]$. We call this rule the *monotone error rule* (ME rule).

2. Continuous Regularization Methods

2.1. THE ME RULE

Three well known *a posteriori* rules for choosing the regularization parameter r in continuous regularization methods (2) are:

(i) Morozov's discrepancy principle [2, 10]. In this principle (D principle) the parameter $r = r_D$ is chosen as the solution of the equation

$$d_D(r) := \|f_\delta - Au_r\| = C\delta \quad \text{with} \quad C \ge 1.$$

(ii) Rule of Raus [7]. In this rule, which we call R rule, the regularization parameter $r = r_R$ is chosen as the solution of the equation

$$d_{RG}(r) := \left\| (I - g_r(AA^*)AA^*)^{1/(2p_0)} (f_\delta - Au_r) \right\| = C\delta \quad \text{with} \quad C \ge 1 \,.$$

Here p_0 is the (largest) constant from Assumption (A1), (ii).

(iii) Rule of Engl and Gfrerer [1]. In this rule, which we call EG rule, $r = r_{EG}$ is chosen as the solution of the equation

$$d_{EG}(r) := \gamma^{-1/2} \left(f_{\delta} - A u_r, \frac{\mathrm{d}}{\mathrm{d}r} g_r(AA^*) f_{\delta} \right)^{1/2} = C\delta \quad \text{with} \quad C \ge 1 \,.$$

Here γ is the (smallest) constant with $\sup_{0 \le \lambda \le a} |g_r(\lambda)| \le \gamma r$.

For ordinary and iterated Tikhonov methods the R- and EG rules coincide. We call the resulting rule Raus-Gfrerer rule (RG rule).

In our ME rule the aim consists in searching for the largest regularization parameter $r = r_{ME}$ for which we can guarantee that $\frac{\mathrm{d}}{\mathrm{d}r} ||u_r - u^{\dagger}||^2 \leq 0$ for all $r \in (0, r_{ME}]$. From (2) and the identity $g_r(A^*A)A^* = A^*g_r(AA^*)$ we obtain

$$\begin{aligned} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}r} \|u_r - u^{\dagger}\|^2 &= \left((f_{\delta} - f) - (f_{\delta} - Au_r), \frac{\mathrm{d}}{\mathrm{d}r} g_r(AA^*) f_{\delta} \right) \\ &\leq \left\| \frac{\mathrm{d}}{\mathrm{d}r} g_r(AA^*) f_{\delta} \right\| \left\{ \delta - \frac{\left(f_{\delta} - Au_r, \frac{\mathrm{d}}{\mathrm{d}r} g_r(AA^*) f_{\delta} \right)}{\left\| \frac{\mathrm{d}}{\mathrm{d}r} g_r(AA^*) f_{\delta} \right\|} \right\} \,. \end{aligned}$$

This estimate leads us to following *a posteriori* rule of choosing the regularization parameter in continuous regularization methods (2):

ME rule. For regularization methods with monotonically decreasing functions $d_{ME}(r)$, choose $r = r_{ME}$ as the solution of the equation

$$d_{ME}(r) := \frac{\left(f_{\delta} - Au_r, \frac{\mathrm{d}}{\mathrm{d}r}g_r(AA^*)f_{\delta}\right)}{\left\|\frac{\mathrm{d}}{\mathrm{d}r}g_r(AA^*)f_{\delta}\right\|} = \delta.$$

2.2. ORDINARY AND ITERATED TIKHONOV REGULARIZATION

In these methods we start with $u_{r,0} = 0$ and compute the regularized solution $u_r := u_{\alpha,m}$ recursively by solving the *m* operator equations

$$(A^*A + \alpha I)u_{\alpha,k} = A^*f_{\delta} + \alpha u_{\alpha,k-1}, \quad k = 1, 2, ..., m$$
(3)

where $r = 1/\alpha$. For m = 1 this method is the method of ordinary Tikhonov regularization. In these methods we have $g_r(\lambda) = [1 - (1 + r\lambda)^{-m}]/\lambda$ with some fixed positive integer $m \ge 1$. Assumption (A1) is satisfied with $p_0 = m$, $\gamma_p = (p/m)^p (1 - p/m)^{m-p} \le 1$, $\gamma_* = 1/2$ for m = 1 and $\gamma_* = \sqrt{m}$ for $m \ge 2$. The functions for the RG- and ME rules have the form

$$d_{RG}(\alpha) = (r_{\alpha,m}, r_{\alpha,m+1})^{1/2}$$
 and $d_{ME}(\alpha) = \frac{(r_{\alpha,m}, r_{\alpha,m+1})}{\|r_{\alpha,m+1}\|}$

with $r_{\alpha,m} = f_{\delta} - Au_{\alpha,m}$. The function d_{ME} possesses following properties (see Tautenhahn [8] for m = 1 and the papers [4, 9] for $m \ge 1$):

Theorem 1 Let P denote the orthoprojection of F onto $N(A^*) = \overline{R(A)}^{\perp}$ and let $A^* f_{\delta} \neq 0$. Then:

- (i) $d_{ME}(\alpha)$ is strictly monotonically increasing and obeys $d_{ME}(0) = ||Pf_{\delta}||$ and $\lim_{\alpha \to \infty} d_{ME}(\alpha) = ||f_{\delta}||$. The equation $d_{ME}(\alpha) = \delta$ has a unique solution α_{ME} provided $||Pf_{\delta}|| < \delta < ||f_{\delta}||$.
- (ii) For all $\alpha \in (\alpha_{ME}, \infty)$ there holds $\frac{\mathrm{d}}{\mathrm{d}\alpha} ||u_{\alpha,m} u^{\dagger}||^2 > 0$.
- (iii) There holds $d_{RG}(\alpha) < d_{ME}(\alpha) < d_D(\alpha)$. If C = 1 in the D principle and in the RG rule, then $\alpha_D < \alpha_{ME} < \alpha_{RG}$.

From (ii) and (iii) there follows

$$||u_{\alpha_{ME}} - u^{\dagger}|| < ||u_{\alpha_{RG}} - u^{\dagger}||.$$
(4)

Hence, the ME rule provides always a smaller error than the RG rule. Exploiting the monotonicity property (ii) we obtain for the parameter choice $\alpha = \alpha_{ME}$ order optimal error bounds [9]:

Theorem 2 Assume $u^{\dagger} = (A^*A)^{p/2}v$ with $||v|| \leq E$. Then

$$\|u_{\alpha_{ME}} - u^{\dagger}\| \le \left\{ 2^{\frac{p}{p+1}} + 2^{\frac{-1}{p+1}} \gamma_*(\gamma_{p/2})^{\frac{1}{p}} \right\} E^{\frac{1}{p+1}} \delta^{\frac{p}{p+1}} \quad for \quad p \in (0, 2m]$$

2.3. ASYMPTOTICAL REGULARIZATION

In this regularization method the regularized solution is given by $u_r = u(r)$ where u(r) is the solution of the initial value problem

$$\dot{u}(t) + A^* A u(t) = A^* f_\delta$$
 for $0 < t \le r$, $u(0) = 0$.

This method has the form (2) with $g_r(\lambda) = (1 - e^{-r\lambda})/\lambda$ and Assumption (A1) is satisfied with $\gamma_p = (p/e)^p$, $p_0 = \infty$ and $\gamma_* = 0.6382$. For this method there holds $d_R(r) = d_{EG}(r) = d_{ME}(r) = d_D(r)$. Consequently, all the results known for the D principle [10, 2] are also true for the R rule, EG rule and ME rule, respectively. Exploiting the monotonicity property of our ME rule we obtain that Theorem 2 is valid for the range $p \in (0, \infty)$ and that in the D principle the best constant for C is C = 1:

Theorem 3 Let $A^* f_{\delta} \neq 0$ and let r_D the regularization parameter of the D principle with C = 1. Then $||u_{r_D} - u^{\dagger}|| < ||u_r - u^{\dagger}||$ for all $r < r_D$.

3. Iterative Regularization Methods

3.1. THE ME RULE

Iterative methods for approximately solving ill-posed problems are especially attractive for *large-scale* problems (cf., e.g., Hanke *et al.*[5]). Such problems arise e.g. in the field of parameter identification in differential equations.

We consider iterative methods of the general form

$$u_n = u_{n-1} + g(A^*A)A^*[f_{\delta} - Au_{n-1}], \quad n = 1, 2, ..., r, \quad u_0 = 0$$
 (5)

with continuous functions $g: [0, a] \to \mathbb{R}$ for which we assume that

$$0 < g(\lambda) < 2/\lambda$$
 for $0 \le \lambda \le a$. (6)

Note that (5) has the form (2) with $g_r(\lambda) = [1 - (1 - \lambda g(\lambda))^r]/\lambda$. Two well-known *a posteriori* rules of choosing $r = r(\delta)$ are:

(i) Morozov's discrepancy pinciple [2, 10]. In this principle (D principle) the iteration number $r = r_D$ is chosen as the first index n satisfying

$$d_D(n) := ||r_n|| \le C\delta$$
 with $r_n = f_\delta - Au_n$ and $C \ge 1$.

(ii) Rule of Engl and Gfrerer [1]. In this rule, which we call EG rule, the iteration number $r = r_{EG}$ is chosen as the first index n satisfying

$$d_{EG}(n) := \frac{(r_n + r_{n+1}, g(AA^*)r_n)^{1/2}}{(2\kappa)^{1/2}} \le C\delta \quad \text{with} \quad C \ge 1 \,.$$

Here κ is a constant with $\kappa = \sup\{g(\lambda) \mid 0 \le \lambda \le a\}.$

In our ME rule we search for the *largest* iteration number $r = r_{ME}$ for which we can guarantee that

$$||u_n - u^{\dagger}|| < ||u_{n-1} - u^{\dagger}||$$
 for all $n = 1, 2, ..., r_{ME}$. (7)

We use (5) as well as the relations $r_n = [I - AA^*g(AA^*)]r_{n-1}$ and $g(A^*A)A^* = A^*g(AA^*)$ with $r_n = f_{\delta} - Au_n$ and obtain

$$\|u_{n} - u^{\dagger}\|^{2} - \|u_{n-1} - u^{\dagger}\|^{2} = \left(2(f_{\delta} - f) - (r_{n-1} + r_{n}), g(AA^{*})r_{n-1}\right)$$

$$\leq 2\|g(AA^{*})r_{n-1}\| \left\{\delta - \frac{(r_{n-1} + r_{n}, g(AA^{*})r_{n-1})}{2\|g(AA^{*})r_{n-1}\|}\right\}.$$
 (8)

This estimate leads us to the following *a posteriori* rule of choosing the iteration number $r = r_{ME}$ in method (5), which we call *monotone error* rule:

ME rule. Choose $r = r_{ME}$ as the first index *n* satisfying

$$d_{ME}(n) := \frac{(r_n + r_{n+1}, g(AA^*)r_n)}{2\|g(AA^*)r_n\|} \le \delta$$

Note that due to (8) the property (7) is satisfied. Some further general properties of this rule are studied in the paper of Hämarik [3].

3.2. LANDWEBER'S METHOD

This method is characterized by (5) with $g(\lambda) = \beta$ and $\beta \in (0, 2/a)$. For this method Assumption (A1) holds with $\gamma_p = [p/(\beta e)]^p$, $p_0 = \infty$ and $\gamma_* = \sqrt{\beta}$. The EG- and ME rules are characterized by

$$d_{EG}(n) = \frac{(r_n + r_{n+1}, r_n)^{1/2}}{\sqrt{2}}$$
 and $d_{ME}(n) = \frac{(r_n + r_{n+1}, r_n)}{2\|r_n\|}$.

From the identity $r_{n+1} = [I - g(AA^*)AA^*]r_n$ we obtain in case $A^*f_{\delta} \neq 0$ that

$$||r_{n+1}||^2 < (r_n, r_{n+1}) < ||r_n||^2 \text{ for all } n \ge 0$$
 (9)

holds true for arbitrary iteration methods (5) that fulfill (6). Consequently,

 $d_D(n+1) < d_{ME}(n) < d_{EG}(n) < d_D(n)$ for all $n \ge 0$. (10)

From (10) and the fact that $d_D(n)$ is strictly monotonically decreasing with $\lim_{n\to\infty} d_D(n) = \|Pf_{\delta}\|$ we conclude:

Theorem 4 Let $A^* f_{\delta} \neq 0$. Then:

- (i) The functions $d_{ME}(n)$ and $d_{EG}(n)$ are strictly monotonically decreasing and obey $\lim_{n\to\infty} d_{ME}(n) = \lim_{n\to\infty} d_{EG}(n) = ||Pf_{\delta}||.$
- (ii) Let $||Pf_{\delta}|| < C\delta$, then the regularization parameters r_D , r_{ME} and r_{EG} are well defined and in case C = 1 we have $r_D - 1 \le r_{ME} \le r_{EG} \le r_D$.

From Theorem 4 and property (7) we obtain that the iteration should not be stopped as long as $||Au_{n+1} - f_{\delta}|| \ge \delta$ holds:

Theorem 5 Let $A^* f_{\delta} \neq 0$. If $||Au_{n+1} - f_{\delta}|| \ge \delta$, then $||u_n - u^{\dagger}|| < ||u_{n-1} - u^{\dagger}||$.

3.3. IMPLICIT ITERATION SCHEME

This method is characterized by (5) with $g(\lambda) = (\lambda + \rho)^{-1}$ and $\rho > 0$. Assumption (A1) holds with $\gamma_p = (p/\rho)^p$, $p_0 = \infty$ and $\gamma_* = 0.6382/\sqrt{\rho}$. Since $g(AA^*)r_n = \rho^{-1}r_{n+1}$, for the EG- and ME rules we obtain

$$d_{EG}(n) = \frac{(r_n + r_{n+1}, r_{n+1})^{1/2}}{\sqrt{2}}$$
 and $d_{ME}(n) = \frac{(r_n + r_{n+1}, r_{n+1})}{2\|r_{n+1}\|}$.

Exploiting (9) we find

$$d_D(n+1) < d_{EG}(n) < d_{ME}(n) < d_D(n)$$
 for all $n \ge 0$. (11)

From (11) and the fact that $d_D(n)$ is strictly monotonically decreasing we conclude that analogous properties as in Theorems 4 and 5 hold true.

4. Numerical Experiments

In this section we summarize some of our numerical experiments for integral equations of the first kind

$$(Au)(s) = \int_0^1 K(s,t)u(t) \, \mathrm{d}t = f(s) \,, \quad 0 \le s \le 1$$
 (12)

in a L^2 -space setting with $H = F = L^2(0, 1)$. The discretization is done by n = 1200 piecewise constant spline basis functions.

In our numerical experiments Tikhonov's method (3) with m = 1 has been used. The regularization parameter α has been chosen by the MErule, the RG rule and the D principle, respectively. For C we have used C = 1.

Our test problem is taken from [6]. It is an equation (12) with kernel

$$K(s,t) = \begin{cases} s(1-t)(2t-t^2-s^2)/6 & \text{for } 0 \le s \le t \le 1\\ t(1-s)(2s-s^2-t^2)/6 & \text{for } 0 \le t \le s \le 1. \end{cases}$$

The right-hand side f, the solution u^{\dagger} and the maximal smoothness parameter p_* for which $u^{\dagger} = (A^*A)^{p/2}v$ with $||v|| \leq E$ for all $p \in (0, p_*)$ are:

$$f(s) = \sin \pi s / \pi^4$$
, $u(t) = \sin \pi t$, $p_* = \infty$. (13)

In our computations we used instead of f randomly perturbed noisy data f_{δ} with $||f - f_{\delta}|| = \delta$. Actually f has randomly perturbed 20 times. For every f_{δ} the regularized solution has been computed and the errors in Table 1 represent mean values. Following abbreviations have been used:

$$e_D = ||u_{\alpha_D} - u^{\dagger}||, \quad e_{RG} = ||u_{\alpha_{RG}} - u^{\dagger}||, \quad e_{ME} = ||u_{\alpha_{ME}} - u^{\dagger}||.$$

Let us discuss the numerical results. Since $u^{\dagger} = (A^*A)^{p/2}v$ with $p \geq 2$ we conclude from Theorem 2 that we should obtain the convergence rate $O(\delta^{2/3})$ for the parameter choice $\alpha = \alpha_{ME}$, which also holds for $\alpha = \alpha_{RG}$. For $\alpha = \alpha_D$ we have to expect the convergence rate $O(\delta^{1/2})$. Table 1 verifies these results and shows that the ME- and RG rules provide more accurate regularized solutions than the D principle for δ sufficiently small.

δ	e_D	e_{RG}	e_{ME}	$e_D/\delta^{1/2}$	$e_{RG}/\delta^{2/3}$	$e_{ME}/\delta^{2/3}$
10^{-1}	.24581	.28266	.25211	.777	1.31	1.17
10^{-2}	.06768	.09226	.07889	.677	1.99	1.70
10^{-3}	.02039	.02073	.01721	.645	2.07	1.72
10^{-4}	.00624	.00493	.00415	.624	2.29	1.93
10^{-5}	.00212	.00117	.00098	.670	2.51	2.12

Table 1. Errors for example (13)

Finally we note that in all examples we observed that $e_{ME} < e_{RG}$ and that $\alpha_D < \alpha_{ME} < \alpha_{RG}$ which is in agreement with (4) and Theorem 1, (iii).

Acknowledgments

The authors acknowledge assistance from Reimo Palm, University of Tartu, for providing a MATLAB-code for the numerical computations. The work was written during the visit of the first author at the University of Applied Sciences Zittau/Görlitz (July 1999 – September 1999), which was supported by DFG (Deutsche Forschungsgemeinschaft), grant 436 EST. In addition the work was supported by the Estonian Science Foundation, grant 3026.

References

- 1. H.W. Engl and H. Gfrerer, Appl. Numer. Math. 4, 395-417 (1988).
- 2. H.W. Engl, M. Hanke and A. Neubauer, *Regularization of Inverse Problems* (Kluwer, Dordrecht, 1996).
- U. Hämarik, in Differential and Integral Equations: Theory and Numerical Analysis, ed. A. Pedas (Estonian Math. Society, Tartu, 1999).
- 4. U. Hämarik and T. Raus, Proc. Estonian Acad. Sci. Phys. Math. 48, 133-145 (1999).
- 5. M. Hanke and P.C. Hansen, Surv. Math. Ind. 4, 253-315 (1993).
- 6. A. Neubauer, SIAM J. Numer. Anal. 25, 1313-1326 (1988).
- 7. T. Raus, Acta et Comment. Univ. Tartuensis 715, 12-20 (1985).
- U. Tautenhahn, in Proc. of the HERCMA'98 Conf. Sept. 24-26 1998, Athens, ed. E.A. Lipitakis (Lea Publishers, 1999) (to appear).
- 9. U. Tautenhahn and U. Hämarik, Inverse Problems, accepted (1999).
- G.M. Vainikko and A.Y. Veretennikov, Iteration Procedures in Ill-Posed Problems (Nauka, Moscow, 1986) (in Russian).