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Abstract. We consider ill-posed problems Au = f with minimum-norm solution

u

y

. We suppose that instead of f noisy data f

�

are available with kf � f

�

k � �

and that A 2 L(H;F ) is a linear bounded operator between Hilbert spaces H

and F with non-closed range R(A). Regularized solutions u

r

are obtained by a

general regularization scheme which includes Tikhonov regularization u

r

= (A

�

A+

r

�1

I)

�1

A

�

f

�

, iterative regularization and others. We discuss a new a posteriori

rule for choosing the regularization parameter r = r(�) which we call monotone

error rule (ME rule). In this rule we choose r = r

ME

as the largest r-value for

which we are able to prove that the error ku

r

� u

y

k is monotonically decreasing for

r 2 [0; r

ME

]. Our rule leads to order optimal error bounds. Numerical results are

given.

1. Introduction

In this paper we consider linear ill-posed problems

Au = f (1)

where A 2 L(H;F ) is a bounded operator with non-closed range R(A) and

H;F are in�nite dimensional real Hilbert spaces with inner products (�; �)

and norms k � k. We are interested in the minimum-norm solution u

y

of

problem (1) and assume that instead of exact data f there are given noisy

data f

�

2 F with kf � f

�

k � � and known noise level �.

Ill-posed problems (1) arise in a wide variety of problems in applied

sciences. For their stable numerical solution regularization methods are nec-

essary, see [2, 5, 10]. A large class of regularization methods has the form

u

r

= g

r

(A

�

A)A

�

f

�

: (2)

1
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Here g

r

(�) : [0; a]! IR with a = kA

�

Ak is a family of piecewise continuous

functions depending on a positive regularization parameter r > 0, and the

operator function g

r

is de�ned according to g

r

(A

�

A) =

R

a

0

g

r

(�) dE

�

where

A

�

A =

R

a

0

� dE

�

is the spectral decomposition of A

�

A. For the function g

r

which characterizes the special regularization method we suppose:

Assumption (A1). There exist positive constants 

�

, 

p

and p

0

such that

the function g

r

(�) : (0; a]! IR with kA

�

Ak � a satis�es the estimates

(i) sup

0���a

p

� jg

r

(�)j � 

�

p

r ;

(ii) sup

0���a

�

p

j1� �g

r

(�)j � 

p

r

�p

for all p 2 (0; p

0

] ;

(iii) j1� �g

r

1

(�)j � j1� �g

r

2

(�)j for 0 � � � a and 0 � r

2

� r

1

:

The (maximal) number p

0

in Assumption (A1) is called quali�cation [10]

of the regularization method (2).

One of the main problems in applying regularization methods is the

proper choice of the regularization parameter r = r(�). Due to (ii) and

(iii), in the case of exact data we have monotone convergence ku

r

� u

y

k ! 0

for r ! 1. In the case of noisy data the monotone decrease of the error

ku

r

� u

y

k can only be guaranteed for small r. Typically ku

r

� u

y

k diverges

for r ! 1. Therefore a rule for the proper choice of r is necessary. In this

paper we study a new rule in which r = r

ME

(�) is chosen as the largest

r-value for which we are able to prove (under the assumption kf � f

�

k � �)

that the error ku

r

�u

y

k is monotonically decreasing for r 2 [0; r

ME

]. We call

this rule the monotone error rule (ME rule).

2. Continuous Regularization Methods

2.1. THE ME RULE

Three well known a posteriori rules for choosing the regularization parameter

r in continuous regularization methods (2) are:

(i) Morozov's discrepancy principle [2, 10]. In this principle (D principle)

the parameter r = r

D

is chosen as the solution of the equation

d

D

(r) := kf

�

� Au

r

k = C� with C � 1 :

(ii) Rule of Raus [7]. In this rule, which we call R rule, the regularization

parameter r = r

R

is chosen as the solution of the equation

d

RG

(r) :=






(I � g

r

(AA

�

)AA

�

)

1=(2p

0

)

(f

�

� Au

r

)






= C� with C � 1 :
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Here p

0

is the (largest) constant from Assumption (A1), (ii).

(iii) Rule of Engl and Gfrerer [1]. In this rule, which we call EG rule, r = r

EG

is chosen as the solution of the equation

d

EG

(r) := 

�1=2

�

f

�

�Au

r

;

d

dr

g

r

(AA

�

)f

�

�

1=2

= C� with C � 1 :

Here  is the (smallest) constant with sup

0���a

jg

r

(�)j � r.

For ordinary and iterated Tikhonov methods the R{ and EG rules coin-

cide. We call the resulting rule Raus-Gfrerer rule (RG rule).

In ourME rule the aim consists in searching for the largest regularization

parameter r = r

ME

for which we can guarantee that

d

dr

ku

r

�u

y

k

2

� 0 for all

r 2 (0; r

ME

]. From (2) and the identity g

r

(A

�

A)A

�

= A

�

g

r

(AA

�

) we obtain

1

2

d

dr

ku

r

� u

y

k

2

=

�

(f

�

� f)� (f

�

� Au

r

);

d

dr

g

r

(AA

�

)f

�

�

�







d

dr

g

r

(AA

�

)f

�







8

<

:

� �

�

f

�

�Au

r

;

d

dr

g

r

(AA

�

)f

�

�







d

dr

g

r

(AA

�

)f

�







9

=

;

:

This estimate leads us to following a posteriori rule of choosing the regular-

ization parameter in continuous regularization methods (2):

ME rule. For regularization methods with monotonically decreasing func-

tions d

ME

(r), choose r = r

ME

as the solution of the equation

d

ME

(r) :=

�

f

�

� Au

r

;

d

dr

g

r

(AA

�

)f

�

�







d

dr

g

r

(AA

�

)f

�







= � :

2.2. ORDINARY AND ITERATED TIKHONOV REGULARIZATION

In these methods we start with u

r;0

= 0 and compute the regularized solution

u

r

:= u

�;m

recursively by solving the m operator equations

(A

�

A+ �I)u

�;k

= A

�

f

�

+ �u

�;k�1

; k = 1; 2; :::;m (3)

where r = 1=�. For m = 1 this method is the method of ordinary Tikhonov

regularization. In these methods we have g

r

(�) = [1 � (1 + r�)

�m

]=� with

some �xed positive integerm � 1. Assumption (A1) is satis�ed with p

0

= m,



p

= (p=m)

p

(1� p=m)

m�p

� 1, 

�

= 1=2 for m = 1 and 

�

=

p

m for m � 2.

The functions for the RG{ and ME rules have the form

d

RG

(�) = (r

�;m

; r

�;m+1

)

1=2

and d

ME

(�) =

(r

�;m

; r

�;m+1

)

kr

�;m+1

k
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with r

�;m

= f

�

� Au

�;m

. The function d

ME

possesses following properties

(see Tautenhahn [8] for m = 1 and the papers [4, 9] for m � 1):

Theorem 1 Let P denote the orthoprojection of F onto N(A

�

) = R(A)

?

and let A

�

f

�

6= 0. Then:

(i) d

ME

(�) is strictly monotonically increasing and obeys d

ME

(0) = kPf

�

k

and lim

�!1

d

ME

(�) = kf

�

k. The equation d

ME

(�) = � has a unique

solution �

ME

provided kPf

�

k < � < kf

�

k.

(ii) For all � 2 (�

ME

;1) there holds

d

d�

ku

�;m

� u

y

k

2

> 0.

(iii) There holds d

RG

(�) < d

ME

(�) < d

D

(�). If C = 1 in the D principle

and in the RG rule, then �

D

< �

ME

< �

RG

.

From (ii) and (iii) there follows

ku

�

ME

� u

y

k < ku

�

RG

� u

y

k : (4)

Hence, the ME rule provides always a smaller error than the RG rule. Ex-

ploiting the monotonicity property (ii) we obtain for the parameter choice

� = �

ME

order optimal error bounds [9]:

Theorem 2 Assume u

y

= (A

�

A)

p=2

v with kvk � E. Then

ku

�

ME

� u

y

k �

�

2

p

p+1

+ 2

�1

p+1



�

(

p=2

)

1

p

�

E

1

p+1

�

p

p+1

for p 2 (0; 2m] :

2.3. ASYMPTOTICAL REGULARIZATION

In this regularization method the regularized solution is given by u

r

= u(r)

where u(r) is the solution of the initial value problem

_u(t) + A

�

Au(t) = A

�

f

�

for 0 < t � r ; u(0) = 0 :

This method has the form (2) with g

r

(�) = (1 � e

�r�

)=� and Assumption

(A1) is satis�ed with 

p

= (p=e)

p

, p

0

=1 and 

�

= 0:6382. For this method

there holds d

R

(r) = d

EG

(r) = d

ME

(r) = d

D

(r). Consequently, all the results

known for the D principle [10, 2] are also true for the R rule, EG rule and

ME rule, respectively. Exploiting the monotonicity property of ourME rule

we obtain that Theorem 2 is valid for the range p 2 (0;1) and that in the

D principle the best constant for C is C = 1:

Theorem 3 Let A

�

f

�

6= 0 and let r

D

the regularization parameter of the D

principle with C = 1. Then ku

r

D

� u

y

k < ku

r

� u

y

k for all r < r

D

.
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3. Iterative Regularization Methods

3.1. THE ME RULE

Iterative methods for approximately solving ill-posed problems are especially

attractive for large-scale problems (cf., e.g., Hanke et al.[5]). Such problems

arise e.g. in the �eld of parameter identi�cation in di�erential equations.

We consider iterative methods of the general form

u

n

= u

n�1

+ g(A

�

A)A

�

[f

�

� Au

n�1

] ; n = 1; 2; :::; r ; u

0

= 0 (5)

with continuous functions g : [0; a]! IR for which we assume that

0 < g(�) < 2=� for 0 � � � a : (6)

Note that (5) has the form (2) with g

r

(�) = [1 � (1 � �g(�))

r

]=�. Two

well-known a posteriori rules of choosing r = r(�) are:

(i) Morozov's discrepancy pinciple [2, 10]. In this principle (D principle)

the iteration number r = r

D

is chosen as the �rst index n satisfying

d

D

(n) := kr

n

k � C� with r

n

= f

�

� Au

n

and C � 1 :

(ii) Rule of Engl and Gfrerer [1]. In this rule, which we call EG rule, the

iteration number r = r

EG

is chosen as the �rst index n satisfying

d

EG

(n) :=

(r

n

+ r

n+1

; g(AA

�

)r

n

)

1=2

(2�)

1=2

� C� with C � 1 :

Here � is a constant with � = supfg(�) j 0� � � ag:

In ourME rule we search for the largest iteration number r = r

ME

for which

we can guarantee that

ku

n

� u

y

k < ku

n�1

� u

y

k for all n = 1; 2; :::; r

ME

: (7)

We use (5) as well as the relations r

n

= [I�AA

�

g(AA

�

)]r

n�1

and g(A

�

A)A

�

=

A

�

g(AA

�

) with r

n

= f

�

�Au

n

and obtain

ku

n

� u

y

k

2

� ku

n�1

� u

y

k

2

=

�

2(f

�

� f)� (r

n�1

+ r

n

); g(AA

�

)r

n�1

�

� 2kg(AA

�

)r

n�1

k

�

� �

(r

n�1

+ r

n

; g(AA

�

)r

n�1

)

2kg(AA

�

)r

n�1

k

�

: (8)

This estimate leads us to the following a posteriori rule of choosing the

iteration number r = r

ME

in method (5), which we call monotone error

rule:
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ME rule. Choose r = r

ME

as the �rst index n satisfying

d

ME

(n) :=

(r

n

+ r

n+1

; g(AA

�

)r

n

)

2kg(AA

�

)r

n

k

� � :

Note that due to (8) the property (7) is satis�ed. Some further general

properties of this rule are studied in the paper of H�amarik [3].

3.2. LANDWEBER'S METHOD

This method is characterized by (5) with g(�) = � and � 2 (0; 2=a). For this

method Assumption (A1) holds with 

p

= [p=(�e)]

p

, p

0

= 1 and 

�

=

p

�.

The EG{ and ME rules are characterized by

d

EG

(n) =

(r

n

+ r

n+1

; r

n

)

1=2

p

2

and d

ME

(n) =

(r

n

+ r

n+1

; r

n

)

2kr

n

k

:

From the identity r

n+1

= [I � g(AA

�

)AA

�

]r

n

we obtain in case A

�

f

�

6= 0

that

kr

n+1

k

2

< (r

n

; r

n+1

) < kr

n

k

2

for all n � 0 (9)

holds true for arbitrary iteration methods (5) that ful�ll (6). Consequently,

d

D

(n+ 1) < d

ME

(n) < d

EG

(n) < d

D

(n) for all n � 0 : (10)

From (10) and the fact that d

D

(n) is strictly monotonically decreasing with

lim

n!1

d

D

(n) = kPf

�

k we conclude:

Theorem 4 Let A

�

f

�

6= 0. Then:

(i) The functions d

ME

(n) and d

EG

(n) are strictly monotonically decreasing

and obey lim

n!1

d

ME

(n) = lim

n!1

d

EG

(n) = kPf

�

k.

(ii) Let kPf

�

k < C�, then the regularization parameters r

D

, r

ME

and r

EG

are well de�ned and in case C = 1 we have r

D

� 1 � r

ME

� r

EG

� r

D

.

From Theorem 4 and property (7) we obtain that the iteration should

not be stopped as long as kAu

n+1

� f

�

k � � holds:

Theorem 5 Let A

�

f

�

6= 0. If kAu

n+1

�f

�

k � �, then ku

n

�u

y

k < ku

n�1

�u

y

k.

3.3. IMPLICIT ITERATION SCHEME

This method is characterized by (5) with g(�) = (� + �)

�1

and � > 0.

Assumption (A1) holds with 

p

= (p=�)

p

, p

0

= 1 and 

�

= 0:6382=

p

�.

Since g(AA

�

)r

n

= �

�1

r

n+1

, for the EG{ and ME rules we obtain

d

EG

(n) =

(r

n

+ r

n+1

; r

n+1

)

1=2

p

2

and d

ME

(n) =

(r

n

+ r

n+1

; r

n+1

)

2kr

n+1

k

:
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Exploiting (9) we �nd

d

D

(n+ 1) < d

EG

(n) < d

ME

(n) < d

D

(n) for all n � 0 : (11)

From (11) and the fact that d

D

(n) is strictly monotonically decreasing we

conclude that analogous properties as in Theorems 4 and 5 hold true.

4. Numerical Experiments

In this section we summarize some of our numerical experiments for integral

equations of the �rst kind

(Au)(s) =

Z

1

0

K(s; t)u(t) dt = f(s) ; 0 � s � 1 (12)

in a L

2

-space setting with H = F = L

2

(0; 1). The discretization is done by

n = 1200 piecewise constant spline basis functions.

In our numerical experiments Tikhonov's method (3) with m = 1 has

been used. The regularization parameter � has been chosen by the ME

rule, the RG rule and the D principle, respectively. For C we have used

C = 1.

Our test problem is taken from [6]. It is an equation (12) with kernel

K(s; t) =

8

>

<

>

:

s(1� t)(2t� t

2

� s

2

)=6 for 0 � s � t � 1

t(1� s)(2s� s

2

� t

2

)=6 for 0 � t � s � 1 :

The right-hand side f , the solution u

y

and the maximal smoothness param-

eter p

�

for which u

y

= (A

�

A)

p=2

v with kvk � E for all p 2 (0; p

�

) are:

f(s) = sin �s=�

4

; u(t) = sin �t ; p

�

=1 : (13)

In our computations we used instead of f randomly perturbed noisy data

f

�

with kf � f

�

k = �. Actually f has randomly perturbed 20 times. For

every f

�

the regularized solution has been computed and the errors in Table

1 represent mean values. Following abbreviations have been used:

e

D

= ku

�

D

� u

y

k ; e

RG

= ku

�

RG

� u

y

k ; e

ME

= ku

�

ME

� u

y

k :

Let us discuss the numerical results. Since u

y

= (A

�

A)

p=2

v with p � 2

we conclude from Theorem 2 that we should obtain the convergence rate

O(�

2=3

) for the parameter choice � = �

ME

, which also holds for � = �

RG

.

For � = �

D

we have to expect the convergence rate O(�

1=2

). Table 1 veri�es

these results and shows that the ME{ and RG rules provide more accurate

regularized solutions than the D principle for � su�ciently small.
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Table 1. Errors for example (13)

� e

D

e

RG

e

ME

e

D

=�

1=2

e

RG

=�

2=3

e

ME

=�

2=3

10

�1

:24581 :28266 :25211 :777 1:31 1:17

10

�2

.06768 .09226 .07889 .677 1.99 1.70

10

�3

.02039 .02073 .01721 .645 2.07 1.72

10

�4

.00624 .00493 .00415 .624 2.29 1.93

10

�5

.00212 .00117 .00098 .670 2.51 2.12

Finally we note that in all examples we observed that e

ME

< e

RG

and

that �

D

< �

ME

< �

RG

which is in agreement with (4) and Theorem 1, (iii).
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