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Abstract: - We consider linear ill-posed problems Au = f in Hilbert spaces. Regularized approximations
ur to solutions u, of problem Au = f are obtained by a general regularization scheme, including the
Tikhonov method, iterative and other methods. We assume that instead of f € R(A) noisy data f are
available with the approximately given noise level §: it holds Ilf — fll/6 < Cfor 6§ — 0, but C = const
1s unknown. We propose a new a-posteriori rule for the choice of the regularization parameter r = r(9)
guaranteeing Urs) — U, for § — 0. Note that such convergence is not guaranteed for the parameter
choice by the discrepancy principle ||Au, — f[] = b6 with b < C and for parameter choice rules which
, Wahba’s generalized cross-validation rule, Hansen'’s
ellf - fll <6 are quasioptimal and order-optimal.

do not use the noise level (quasioptimality criterion
L-curve rule). We give error estimates which in cas
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principle, L-curve.

1 Introduction
We consider an operator equation

Au=f, [feR(A), (1)

where A € L(H, F) is the linear continuous op-
erator between real Hilbert spaces H and F. In
general our problem is ill-posed (see [16,18]): the
range R(A) may be non-closed, the kernel N(A)
may be non-trivial. We suppose that instead of
the exact data f we have only an approximation
f € H with noise f-f.

The approximate solution wu, of the ill-posed
problem Au = f is found by some regularization
method and depends on the regularization param-
eter 7. The important problem is how to choose
the proper regularization parameter r. If there is
some information about the noise level of the data,
this information should be used for the choice of
7. Consider now the choice of r in situations with
a different amount of information about N7 -7l

Case 1. Full information about the noise level
is known: the exact noise level § with Nf=fll < éis
given. Then the proper parameter choice r = 7(8)
guarantees u,(5) — u, for § — 0, where u, is the

solution of Au = f, the nearest to the initial ap-
proximation ug (see Section 2; often wug = 0). In
this situation proper rules for the choice of r are
the discrepancy principle [9,17,18] and its modifi-
cation [10] (the Raus-Gfrerer rule [2,11] in case of
non-selfadjoint problem) and the monotone error
rule [6,14].

Case 2. There is no information about noise
level. In this case parameter r may be chosen by
the quasioptimality criterion [15,16], by the GCV-
rule {3,19], by the L-curve rule 8] or by rule of [7].
The serious disadvantage of these rules is that con-
Vergence ur(5) — u. for & — 0 is not guaranteed
(see [1]).

In applied inverse and ill-posed problems the
situation is often between extreme cases 1, 2: some
approximate § is known, but it is unknown, if the
inequality ||f — fll < 4 holds or not. In this
paper we are interested in the case of approxi-
mately given noise level §: instead of the inequal-
ity ||f—f|[ < 6 we assume that ||f - f||/6 < C for
6 — 0, where C is an unknown constant. We give
a rule for the parameter choice r = r(6) guaran-
teeing u,sy — u. for § — 0. For self-adjoint prob-
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lems this rule was lately proposed in [4,5], where
convergence is also proven.

2 Regularization methods

We consider the regularization methods in the gen-
eral form (see [17,18]), using in case F = H,
A = A* > 0 (referred later as the selfadjoint case)
the approximation

ur = (I = Agr(A))ug + gr(A)f (2)

in general case (in non-selfadjoint case) the ap-
proximation

ur = (I — A" Agr (A" A))up + g (A" A)A*f. (3)

Here ug is the initial approximation, I is the iden-
tity operator and the function g.()) satisfies the
conditions (4)-(6):

sup |g (A <yr, 720, (4)

0<A<a

sup AP|1 = Agr(A)] < ypr?
0<A<a

, 720,0 <p<po,

(5)
sup VAIgr(M| < %vr, r 200 (6)
0<A<a

Here pg, 7, 7p and <. are positive constants,
a > || A]| for the approximation (2} and a > || A* A}]
for the approximation (3), v < 1 and the greatest
value of pg, for which the inequality (5) holds is

called the qualification of method.

The following pairs of regularization methods
are special cases of general methods (2}, (3) for
problems with H = F, A = A* > 0 and for gen-
eral problems respectively.

M1 The Lavrentiev method u, = (af + A)~!f
and the Tikhonov method u, = (al +
A*A)7'A*f. Hereug =0, 7 = a” 1, g.(\) =
A+ py =17 =1,7, = pP(1-p)'?,
Yo =1/2.

M2 The iterative variants of the Lavrentiev

method and of the Tikhonov method. Let
€ H -
initial approximation and u,, = (al +
A" Haun-10 + f) (n =1,...,m) (method
(2)), Una = (o + A*A) Hau,_ 1.4 + A*f)
(n=1,...,m) (method (3)). Here r = a1,

T
Yp = (p/m)P(1 = p/m)™7P, 4, = /m.

m € N, m > 1 u = uge

M3 Explicit iteration scheme (the Landweber’s
method). Let u, = un_l—,u(Aun_l——f), TS
(0,1/11Al), n = 1,2,... (method (2)), un =
Un—1 — pA (Aun—1 = f), p € (0,1/] A7 Al}).

n = 1,2,... (method (3)). Here r = n,

gr(A) = 3(1 = (1= pA)7), po = o0, v = p,

Y = (p/(1e))?, v = /it

M4 Implicit iteration scheme. Let a > 0 be
a constant and au, + Au, = aqup_1 + f,
n=1,2,... (method (2)), au, + A*Au, =

f (method (3)).

QUn-1 + A f, n = 1,2,... 2
Here r = n, g (\) = %(1 - (ﬁx) ),

po =00, ¥ = l/a, v = (ap)?, 7. = bo/ Ve,
where bg = sup A7Y2(1 - e™?) =~ 0.6382.
0<A<oo

M5 The method of the Cauchy problem: ap-
proximation u, solves the Cauchy problem
u'(r) + Au(r) = f, uw(0) = ug (method (2)),
v'(r) + A” Au(r) = A*f (method (3)). Here
(A = (1 —-e™), pp = o0, v = 1,
Y = (p/€)F, 1+ = bo.

3 Parameter choice for exactly
given noise level of data

In regularization methods (2), (3) the error u, —u,
depends crucially on the choice of a regularization
parameter r. If r is too small, the approximation
error is large and if r is too large, the error is large
due to noise.

At first we consider the choice of 7 in the case
when the exact noise level § with ||/ — f|| < §
is known. Then the most prominent rule for the
Tikhonov method and for methods M2-M3 is the
discrepancy principle [9,17,18], where the regu-
larization parameter r = rp is chosen as the
solution of the equation “Aur - f” ~ bd with
b = const > 1. The second rule in the case of
known ¢ is the modification of the discrepancy
principle {10] (the Raus-Gfrerer rule [2,11] in non-
selfadjoint case). In this rule the regularization
parameter r = rpsp is chosen as the solution of the
equation || By (Au, — f)“ ~ b4 with b = const > 1,

I, if pg = oo,
B,={ (K.(A))YPo for appr. (2), if py < oo,
(K- (AA*))Y/2Po) for appr. (3), if py < oo,
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where K, (A) =1 — Ag.(A).

In the Tikhonov method and in the iterated
Tikhonov method the Raus-Gfrerer rule and the
monotone error rule [6,14] choose the regulariza-
tion parameters arg and apMg as the solutions of
the equations (Aum o f AUmi1a — f) =bd, b >
L, (Aum,a f Aum+1a f)/']Aun7-+1,a -fll=9
respectively. Note that in these methods always
OME < QRG; HU’QME —u < HuaRG = U |-

All rules what we considered guarantee con-
vergence |luy — u,| — 0 for § — 0 and order-
optimality: if ug — u, = (A*AP/2y, v € H,
Wl < 0, p > 0, then [Jur — w.|| < CpomTé5T,
where in self-adjoint case p € (0,pg — 1] for r = rp
and p € (0;pg] for r = rMp, in non-selfadjoint
case p € (0,2po — 1] for r = rp and p € (0, 2py) for
r =7rRrG = l/arg and for r = ryg = 1/aymg. The
errors of the approximations (2), (3) have corre-
sponding forms

K (A)(uo—us) + gr(A)(f“f);
e —tte = K (A A) (w0 —.) + g0 (A" A) A (= )
(7)

Up — Uy =

and in the case || f — f|| < 6 relations (4), (6) yield
corresponding estimates

l[ur = || I K (A) (uo —wi) || +yr8 (Vr>0),
llur = || <K (AT A) (o~ wa) |+ /76 (VTE(())
8)

If some rule for choice of the regularization param-
eter gives parameter r(4), which nearly minimizes
the corresponding estimate, i.e.

llur () — s || < const inf{[| K- (A4)(uo —w.) || +76},
sy = e < const inf (11K (A" A) (uo —u.)
Yev/T6},

then this rule is called quasioptimal. Quasiopti-
mal are the MD-rule, the RG-rule and the mono-
tone error rule. The discrepancy principle is not
quasioptimal for methods with finite qualification
(Po < o).

It is obvious that if a rule is quasioptimal for
method (2) or (3), then this rule is order-optimal
for all p € (0, po) or for all p € (0, 2po) respectively.

All these rules are unstable in this sense that if
the norm of the actual noise in data is only slightly

larger than b4, then the error of the approximate
solution may be arbitrarily large, irrespective of
the value of the ratio of the actual and supposed
noise level.

There are also heuristic parameter choice rules
which do not use the noise level §: the quasiop-
timality criterion [15,16], the Wahba’s generalized
cross-validation rule {3,19], the Hansen’s L-curve
rule (8] and the rules of [7].

Heuristic rules often work well, but as shown
by Bakushinskii [1], one cannot prove the conver-
gence of the approximate solution.

4 Parameter choice for roughly
given noise level

In applied ill-posed problems the exact noise level
is often unknown. Therefore in the following we
assume that only rough supposed error level § > 0
is given, but we do not know exactly, if || f - f|| < &
holds or not. We give the rule for the stable pa-
rameter choice which guarantees the convergence
of the approximate solution to the exact solution if
only the ratio ||f — f||/8 is bounded in the process
4 — 0

If = flI/6 < C=const (§—0). (9
Let us introduce the function

o(r)= {\/ﬂ’Al/gBrg/? (Auy — f)” for appr. (2),
V|l AT B2 (Au, ~ f)” for appr. (3).

We introduce also the constant 7 as follows: if the
qualification of the method is py = oo, then v =
Y1/2; if po < oo, then 7 = ['ypo/(3+2po)]l+3/(2p°) for
the approximation (2) and ¥ = [7p0/(2+2p0)]1+1/”°
for the approximation (3).
Note that in m times iterated Tikhonov
method ¢(r) = p(a™!) = %HA*(AumH,a - DIl
Rule R. Let by > by > 4 and s € [0, 1] for the
approximation (2), s € [0, 1/2] for the approxima-
tion (3). If (1) < b4 then choose r(§) = 1. In
the contrary case we find at first r5(6) > 1 such
that
2 (ra(6)) < bao, (10)
e(r) 2016 Y7 e [1,m(6)]. (11)

For the regularization parameter r(§) we choose
the parameter r, for which the function t(r) =
8| B-(Au, — f)|| has the global minimum on the
interval [1,75(4)].
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Let us reformulate the rule R for the choice
of the stopping index n(§) as the parameter r in
iterative methods. For this rule R’ the analogous
results hold as for the rule R.

Rule R’. Let s € {0,1], s € [0,1/2] for ap-
proximations (2), (3) respectively. Let b be the
constant such that b > 4. Find ny(4) as the first
n = 1,2,..., for which ¢(n) < b6. For the reg-
ularization parameter n(J) we choose n € N, for
which the function t(n) = n®||Au, — f|| has the
global minimum on the interval 1, ny(d)].

Rule R is similar to the rules in [12,13,15,16].
In [12,13] for the regularization parameter the pa-
rameter r3(8) was taken. Rule R can be consid-
ered as the generalization of rules [12,13], since in
case s = 0 these rules coincide, while the func-
tion ||B,(Au, — f)| is monotonically decreasing
with respect to r. For non-selfadjoint problems the
regularization parameter is chosen in the quasiop-
timality criterion [15,16] as the global minimizer
of the function r||B,(Au, — f)||, in rule R as the
minimizer of the function r*||B,(Au, — f)|| with
s € [0,1/2] on the interval [1,75(8)].

In [12,13] for methods M1-M5 the following
results are proven: for each f € F we have
r&r&w(r) = 0; if ﬂf_gﬂl < const for & — 0 then
flurysy — usll — 0 for & — 0. The first re-
sult and the continuity of the function ¢(r) guar-
antee that the choice of finite parameters ro(6)
and () < r9(6) according to Rule R is possi-
ble. Note that the function ¢(r) may be non-
monotone and therefore in Rule R we must use
the conditions (10)-(11) instead of the inequali-
ties byd < () < byd.

The following convergence result is proven in
[4,5] for the approximation (2) and in this paper
we prove it for the approximation (3).

Theorem 1. If "fﬁﬂ < const in the process
6 — 0, then in methods M1-M5 rule R guarantees
convergence

||ur(5) ~u*|l —0 for §—0.

In the following theorem we give the error es-
timate, using notation

¥(r) = [|Kr (A" A) (ug—w.) ||+, v/r max {6, | f - f ||}

(compare (8).

Theorem 2. Let A€ L(H,F), f € R(A).
Let the parameter r(8) in approrimation (3) be
chosen according to Rule R with s € (0,1/2).
Then for methods M1-M5 the following error es-
timates hold

LoI|f -] <

max{6,dy}, where §y =

31Brs) (A — f)ll, then

lursy — uall < C(by, b4, d, ) mf w(r). (12)
Here
d, = (r/0)*|I1B,/o(Avy s — fll

max e
e (5)Sr < <ra@+1 (o) | By (Atigr — f)|
b, = r(6)<r<R ) e(r)/6 > by, R(8) is the great
est parameter for which o(r) = byd and o =
1, 1+(2m/(2m+1))?™+1 /8, 1482 /2, 1+b2/2, 1+
b2/23 for methods MI-M5 respectively, by =

sup A"12(1 —e"®) ~ 0.6382.
0< <00

2. If max{6,60} < I|f = fIl < 3B (Aus )|,
then

oy~ wll < (L) ™ ey )

>0

The proof of Theorem 2 will be presented in a
forthcoming paper.

Proof of Theorem 1. We have from(7) due to
(6) and (9) that

ur(s) —uall < [ Koy (A" A) (uo — ) [+ Cya /7(8)6

(14)
(compare (8). To prove the theorem, it suffices
to show the convergence of the right-hand side of
(14). In [13] is proved that

Vr208)5 =0 if §—0. (15)

From (15) and from the inequality 7(8) < ro(9),
follows the convergence of the second term of (14).

To show the convergence of the first term of
(14) we consider separately the cases a) 7(8) — oo
(0 — oc), b) 7(6) < ¥ = const (§ — 0). If
7(6) — oo in process § — 0 then using the
Banach-Steinhaus theorem it is easy to show that
1K) (A*A)(uo — u,)]] — 0. Consider now the
case b) r(6) <7 = const (6§ — 0). Then we prove
at first that

73(0) 1 Bry(5)(Attryisy — f)| — 0, if § — 0. (16)
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We have

Aup — f = AK (A A)(ug — u.) — KR (AAY)(f - f),
(17)

from  which  with regard the inequality

IB-K(AA*)(f = Pl < If = fl < C& follows
that

73() | Bry(5) (Atiry(sy — Pl <
r3(0)| Bry(5) ARy (5) (A" A) (uo — w.)|| + 75(6)C6.
(18)

To show the convergence

P5(0)1| Bra(a) AR ry(5) (A" A)(ttg — w)| — 0 (8 — 0)

| (19)
we consider separately the cases a) r3(d) — oo
(6 = 0), b) r2(8) <7 = const (§ — 0). If ro(6) —
oo in the process § — 0 then using the Banach-
Steinhaus theorem we can prove similarly as in

[18] (p.45) that rP||B, AK, (A*A)(uy — w.)|| — O
if r = 00 (0 < p <1/2). Now consider the case
r2(0) <7 = const. Using (17), (5) we get
ra(8) /2 A" BE 5y AK () (AT A) (g — )| <
r2(8)! /2 A B, 5) (Aury(s) — DI+
ra(8) || A* B2, (5 Krys) (AATY(F = fI)]| <
bad +viollf = fll < (b2 + Cyyp0)é
from which follows that
|A* B2, 5y AK () (A® A)(uo — w.)|| — 0 if § — 0.
In [18] (p.66) the implication
AK;, (A"A)(up — us) = 0 (n — o0) =
K (A" A)(uo — u.) = 0 (n — 00) (20)

Is proven. Similarly we can show that if
A*B2 AK, (A"A)(up — u.) — 0 (n — o0), then
B2 AK, (A*A)(uo—u.) — 0 (n — o). From the
last convergence and from the inequality of mo-
ments

I1Br AK,(A* A) (uo — u.)| <
IBZAK, (A* A)(uo - u.) | 2| AK, (A" A) (ug — u.)|
< [IBRAK (A" A)(wg—u.) |2 (v~ luo—u.) )

1
2
1
2
follows the convergence (19) in case 75(4) < const.
Now the convergence (16) follows from (18), (19)
and (15).

Taking into account the fact that the parame-
ter r(4) is the global minimum point of the func-
tion t(r) = r°|| B, (Au, ~ f)|| in [1,72(4)], from (16)
follows the convergence

()| Br(s) (Aun(y — f)]| — 0, if 6 — 0.

Using (17) we get

T () Brs) AR5y (A" A) (o — wa)]| <
7° ()1 Br(s) (Aursy— )| +7°(8)C6 — 0, if § — 0.

From this relation with implication of type (20)
and with use of the inequality of moments we get
the convergence ||K,(5)(A™A){up — u.)|| — 0 for
0 — 0 which with (14) proves the theorem.

In the following Remarks 1-3 we consider rule
R for the approximation (2).

Remark 1. Note that for approximation (2)
the analogue of Theorem 2 holds, where in the es-
timates (12), (13) 2s is replaced by s and in the
definition of d, ratio r/p is replaced by r.

Remark 2. If the function t(r) =
r*||Br(Au, — f)|| is monotonously increasing on
the interval [r(8), or2(d) + 1], then d, < 1/0%. In
most of numerical examples we had d, < 1.

Remark 3. One can show that in methods
M1, M2, M3 and M5 coefficient ¢(by, b,,d,) < 2.5,

if by = by = 1.5, b, = by, d. < 1/0°.

5 Conclusion
For the choice of the regularization parameter r
it is recommendable to use the noise level, while
heuristic rules as the L-curve rule, the GCV-rule
etc do not guarantee the convergence of the ap-
proximations. If the noise level is given only ap-
proximately and inequality ||f — f|| < 4 is not
guaranteed, the discrepancy principle and its mod-
ification are unstable. If § with ||f — f||/6 < const
for 6 — 0 is given, we recommend to use our rules
R and R’, guaranteeing convergence and in case
|f — f|| < 6 also quasioptimal error estimates.
Note that for increasing parameter s € (0,1/2)
the error estimate (12) increases and estimate (13)
decreases. Therefore, if we are almost sure in in-
equality ||f — fI| < &, smaller values of s are rec-
ommended.
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