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Abstract We consider ill-posed linear operator equations with operators acting
between Banach spaces. For the stable solution of ill-posed problems regulariza-
tion is necessary, and for using computers discretization is necessary. In some
cases discretization may also be used as regularization method with discretiza-
tion parameter as regularization parameter, additional regularization is not needed.
Regularization by discretization is called self-regularization. We consider self-
regularization by projection methods, giving necessary and sufficient conditions for
self-regularization by a priori choice of the dimension of subspaces as the regu-
larization parameter. Convergence conditions are also given for the choice of the
dimension by the discrepancy principle, without the requirement that the projection
operators are uniformly bounded.

1 Introduction

Consider an ill-posed linear operator equation

Au = f , f ∈R(A) (1)

where A ∈ L(E,F) ia a linear injective mapping between nontrivial Banach spaces
E and F . In practice only noisy data f δ will be given. We assume here that the noise
level δ satisfying

‖ f δ − f‖ ≤ δ (2)

is known. For the stable solution of problem (1) it will be regularized to guarantee
the convergence of regularized solutions to an exact solution u∗ of (1) as δ goes to
zero (see [9, 34]). Often ill-posed problems are formulated in infinite-dimensional
space, but for using computers the problem will be discretized, leading to some
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2 Uno Hämarik and Urve Kangro

finite-dimensional (n-dimensional) problem. Typically discretization and regular-
ization are used as separate procedures (see [14] for error estimates in regularized
projection methods). However, if the data are exact, the successful discretization
can lead to well posed problem with unique solution, which may converge to the
solution of the original infinite-dimensional problem, if the dimensions of the dis-
cretized problems tend to infinity (see [20] for convergence conditions of projection
methods). In this situation the self-regularization is possible: if data are noisy with
known noise level δ , then by proper choice of n = n(δ ) the solutions of discretized
equations with noisy data converge to the solution of the original problem with exact
data.

Self-regularization is probably the oldest regularization method. It is folklore
of numerics that in numerical differentiation of a given noisy function by finite
difference scheme, the discretization step h as the regularization parameter should
be chosen in dependence of the noise level (see e.g. [9, 26]). From 1972 it is known
(see [2]) that the quadrature formula method is a self-regularization method for the
solution of the Volterra integral equation of the first kind; the rules for choice of the
discretization step h = h(δ ) as the regularization parameter in dependence of noise
in the kernel and in the right-hand were given in [2] (see also [1]).

In this paper we consider projection methods. Let En ⊂ E, Zn ⊂ F∗, n ∈ N,
be finite-dimensional nontrivial subspaces which have the role of approximating
the spaces E and F∗, respectively. The general projection method defines a finite-
dimensional approximation un to u∗ by

un ∈ En and ∀zn ∈ Zn : 〈zn,Aun〉F∗,F = 〈zn, f δ 〉F∗,F . (3)

We also consider the least squares method (the “least residual” method would be a
more natural name)

un ∈ argmin{‖Aũn− f δ‖F : ũn ∈ En} (4)

and the least error method

un ∈ argmin{‖ũ‖E : ∀zn ∈ Zn : 〈zn,Aũ〉F∗,F = 〈zn, f δ 〉F∗,F}. (5)

The name “least error” method is justified by the fact that the obtained approxi-
mation un satisfies in case of exact data the inequalities

‖u∗−un‖ ≤ ‖u∗− vn‖, D(u∗,un)≤ D(u∗,vn) ∀vn ∈ En

in Hilbert and Banach spaces respectively (see [16, 32]), where D(u∗,un) is the
Bregman distance and En ⊂ E is a certain subspace. It means that un is respectively
the orthogonal projection or Bregman projection of u∗ onto En. This method is called
dual least-squares method in [3, 9, 21, 23, 26] and moment method in [21]. If E,F
are Hilbert spaces, the least squares and least error methods are characterized by
the equalities Zn = AEn and En = A∗Zn respectively. If E = F is a Hilbert space
and A = A∗ ≥ 0, Galerkin method En = Fn also can be used. Approximate solutions
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of the least squares and least error methods are found from a system of equations
which is linear in Hilbert spaces and unfortunately nonlinear in Banach spaces.

In the collocation method, Zn = span{δ (t − ti), i = 1, . . . ,n} consists of linear
combinations of Dirac’s δ -functions δ (t − ti) with support at collocation points
ti, i = 1, . . . ,n. Then (3) are the collocation conditions

un ∈ En, Aun(ti) = f δ (ti), i = 1, . . . ,n (6)

for finding un from arbitrary fixed subspace En.
Use of Zn = span{δ (t− ti), i = 1, . . . ,n} in the least error method (5) gives the

least error collocation method, called also least-squares collocation [8, 9, 25] or mo-
ment collocation [21]. This method uses also collocation conditions (6), but the ap-
proximate set En is not arbitrary, it results from the condition that un is a minimum-
norm solution of equation (6). If E is Hilbert space, then En is a subspace of E, but
if E is a Banach space, then En is not necessarily a linear space.

Self-regularization by projection method was studied in [26], where the error
estimates were given in Banach space formulation, convergence conditions were
given for the collocation method, in Hilbert space formulation also for least squares
and least error methods. The error estimates there (in Sobolev space formulation for
least squares and Galerkin method also in [27]) allow to formulate a priori rules for
the choice of dimension n = n(δ ). For operator equations with noisy operator and
noisy right-hand side the least squares, least error and Galerkin method were studied
with a priori parameter choice in [12] and with a posteriori choice via discrepancy
principle in [13]. Necessary and sufficient conditions for regularization by general
projection methods in Hilbert spaces were given in [32], applications to mentioned
methods and to class of integral equations of the first kind with Green type kernels
were given. Convergence of the least error collocation method in case of exact data
was proved for the space E = L2 in [25, 8, 21], for Sobolev space E =W m

2 in [33],
for a priori choice n = n(δ ) in [8], for a posteriori choice n = n(δ ) by the monotone
error rule in [15]. In the least error method in Hilbert spaces, a posteriori choice
by the monotone error rule was studied in [15, 10], by the balancing principle in
[3] (these both rules need weaker assumptions than the discrepancy principle). In
Banach spaces the discrepancy principle was studied in [21] for a method close to
the least squares method, in [16] for the general projection method and for the least
squares method. Error estimates in Sobolev and Hölder-Zygmund norms of various
discretization methods in certain boundary integral equations with a priori choice
of n = n(δ ) were given in [4]. Convergence of collocation method in case of exact
data was analysed in [6, 7, 5], convergence by choice of n = n(δ ) by discrepancy
principle was proved in [16]. See also other works [11, 17, 19, 24, 22] about self-
regularization.

In this paper we consider in Section 2 the general projection method. The nec-
essary and sufficient conditions for self-regularization by a priori choice n = n(δ )
are given. Our approach is similar to [21], instead of a projector we use operator
Qn defined by (7). In previous treatments of the a posteriori choice of n = n(δ )
by the discrepancy principle it was required that the projection operators are uni-
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formly bounded. We modify the discrepancy principle so that this requirement is
not needed. In Section 3 we consider the least squares method, in Section 4 the
collocation method, where also numerical examples are given.

2 The general projection method

Let Qn be the linear operator defined by

Qn : F → Z∗n ∀g ∈ F ,zn ∈ Zn : 〈Qng,zn〉Z∗n ,Zn = 〈zn,g〉F∗,F (7)

which allows us to write (3) as

un ∈ En and QnAun = Qn f δ . (8)

The norm of Qn equals one since

‖Qn‖= sup
g∈F,‖g‖F=1

‖Qng‖Z∗n = sup
g∈F,‖g‖F=1,zn∈Zn,‖zn‖F∗=1

〈Qng,zn〉Z∗n ,Zn =

= sup
g∈F,‖g‖F=1,zn∈Zn,‖zn‖F∗=1

〈zn,g〉F∗,F = 1.

In the following lemma from [16] we give conditions under which the operator
An := QnA|En : En→ Z∗n has an inverse, the quantities

κn := sup
vn∈En

‖vn‖E

‖Avn‖F
, κ̆n := ‖A−1

n Qn‖, κ̃n := ‖A−1
n ‖= sup

vn∈En

‖vn‖E

‖QnAvn‖F
, (9)

τn := sup
vn∈En,vn 6=0

‖Avn‖F

‖QnAvn‖Z∗n
. (10)

are finite and un from (3) is well-defined.

Lemma 1. Let
dim(En) = dim(Zn) (11)

and
N (QnA)∩En = {0} (12)

hold. Then the operator An has an inverse and (3) is uniquely solvable for any
f δ ∈ F. We have the inequalities

κn ≤ κ̆n ≤ κ̃n ≤ τnκn. (13)

If
∃τ < ∞ : τn ≤ τ ∀n ∈ N (14)

then also
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κ̃n ≤ τκn,

i.e. the quantities κn, κ̆n and κ̃n are all equivalent as n→ ∞.

Remark 1. If R(A) 6= R(A) and the subspaces En satisfy the condition

inf
vn∈En

‖vn− v‖→ 0 ∀v ∈ E as n→ ∞, (15)

then A−1 is unbounded and κn→ ∞ as n→ ∞.

2.1 Convergence with a priori choice of n

Theorem 1. Let the operator A be injective. Let for n ≥ n0 the assumptions (11),
(12) be satisfied. Then for n ≥ n0 the projection method (3) defines the unique ap-
proximation un, and the following error estimate holds:

‖un−u∗‖E ≤ min
vn∈En

[‖u∗− vn‖E + ‖A−1
n QnA(u∗− vn)‖E ]+ κ̆nδ (16)

≤ (1+‖A−1
n QnA‖) dist(u∗,En)+ κ̆nδ .

In case of exact data (δ = 0) the convergence

‖un−u∗‖E → 0 as n→ ∞ (17)

holds if and only if there exists a sequence of approximations (ûn)n∈N, ûn ∈ En,
satisfying the convergence conditions

‖u∗− ûn‖E → 0 as n→ ∞ (18)

and
‖A−1

n QnA(u∗− ûn)‖→ 0 as n→ ∞. (19)

If these conditions hold and the data are noisy, then choosing n= n(δ ) according
to a priori rule

n(δ )→ ∞ and κ̆n(δ )δ → 0 as δ → 0 (20)

we have convergence
‖un(δ )−u∗‖E → 0 as δ → 0. (21)

Proof. For any vn ∈ En we have, due to linearity of A,

‖un−u∗‖E ≤ ‖u∗− vn‖E + ‖un− vn‖E = ‖u∗− vn‖E + ‖A−1
n Qn( f δ −Avn)‖E =

= ‖u∗− vn‖E + ‖A−1
n Qn[A(u∗− vn)+ f δ − f ]‖E ≤

≤ ‖u∗− vn‖E + ‖A−1
n QnA(u∗− vn)‖E + κ̆nδ ,

hence the convergence estimate (16) holds.
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If (18), (19) hold, then estimate (16) with vn = ûn and our assumptions on the
choice of n(δ ) give convergence in both cases δ = 0 and δ > 0.
To show the necessity of (18), (19), note that if δ = 0 and the convergence (17)
holds, then ûn = un satisfies (18) and (19) (then A−1

n QnA(u∗− ûn) = un− ûn = 0).
ut

According to the previous theorem in case δ = 0 convergence (17) may hold due
to sufficient smoothness of the solution. From this theorem we get in the follow-
ing theorem conditions for convergence for every f ∈R(A) (i.e. for every u∗ ∈ E
without additional smoothness requirements).

Theorem 2. Let the operator A be injective. Let for n > n0 the assumptions (11),
(12) be satisfied. Then in case of exact data (δ = 0) the convergence (17) holds
for every f ∈ R(A) if and only if the subspaces En satisfy condition (15) and the
projectors A−1

n QnA : E→ En are uniformly bounded, i.e.,

‖A−1
n QnA‖ ≤M (22)

for all n≥ n0 and some constant M.
The last two conditions are necessary and sufficient for existence of relations n =
n(δ ) for convergence (21) for every f ∈R(A) given approximately as arbitrary f δ

with ‖ f δ − f‖ ≤ δ .

Proof. At first we show that conditions (15), (22) are sufficient for convergence of
un. If condition (22) holds, then the error estimate (16) is of the form

‖un−u∗‖E ≤ (1+M) min
vn∈En

‖u∗− vn‖E + κ̆nδ , (23)

this together with (15) guarantees convergence (17) for δ = 0 and with parameter
choice (20) also for δ → 0.

To show necessity of conditions (15), (22) for convergence of un, note that con-
vergence (21) for every f δ with ‖ f δ − f‖ ≤ δ implies convergence (17) for f (i.e.
convergence (17) for δ = 0). Let δ = 0 and un→ u∗ for all u∗ ∈ E as n→ ∞. Then
(15) holds. But in case un =A−1

n QnAu∗→ u∗ we have that A−1
n QnA→ I pointwise on

E. By the uniform boundedness principle (Banach–Steinhaus theorem) this implies
that A−1

n QnA must be uniformly bounded, which is condition (22). ut

Remark 2. The boundedness property (22) holds, if uniformly bounded operators
{Pn : E→ En,n ∈ N} exist, satisfying

κ̆n‖A(I−Pn)‖ ≤M. (24)

Namely condition (22) is equivalent to the condition

‖A−1
n QnA(I−Pn)‖ ≤M′, (25)

while A−1
n QnA(I−Pn) = A−1

n QnA−A−1
n QnAPn and the operator A−1

n QnAPn = Pn is
bounded. If (24) holds then using equality κ̆n = ‖A−1

n Qn‖ we get (25).
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For the convergence analysis in case of exact data we can choose different image
spaces, particularly such that the equation becomes well-posed. But for noisy data
the image space is determined by the data.

The following theorem (about the case of the exact data) shows, that convergence
for one equation implies convergence also for certain other equations.

Theorem 3. Let the operator A be injective. Let conditions (11), (12), (18) hold for
n≥ n0. Let the operator A : E→ F have the form A = S+K, where S : E→W ⊂ F
is invertible, W is a Banach space with continuous imbedding and K : E →W is
compact. Let the operator Sn := QnS|En : En→ Z∗n be invertible and ‖S−1

n QnS‖ ≤M
for some constant M. Then the projection equation QnAun = Qn f has for n large
enough a unique solution un ∈ En , and un→ u∗ as n→ ∞.

Proof. From compactness of K follows the compactness of operator S−1K. Denote
Sn =QnS|En . Since S−1 :W→E is bounded, the pointwise convergence S−1

n QnS→ I
on W as n→∞ implies the pointwise convergence S−1

n Qn→ S−1 as n→∞. From the
pointwise convergence S−1

n Qn → S−1 and the compactness of K follows the norm
convergence

‖(I +S−1
n QnK)− (I +S−1K)‖→ 0 as n→ ∞.

Therefore the inverse operator [I + S−1
n QnK]−1 : En → En exists and is uniformly

bounded for large n. Due to equality QnA = QnS[I + (QnS)−1QnK] the operator
QnA on En is invertible for large n with the inverse

(QnA)−1 = [I +(QnS)−1QnK]−1(QnS)−1.

The equality

(QnA)−1QnA = [I +(QnS)−1QnK]−1(QnS)−1QnS(I +S−1K)

allows to estimate

‖(QnA)−1QnA‖ ≤ ‖[I +(QnS)−1QnK]−1‖M‖I +S−1K‖=: MK .

This estimate may be rewritten in the form ‖A−1
n QnA‖ ≤ MK , where the constant

MK depends on the operator K. Therefore condition (22) is satisfied and Theorem 2
guarantees convergence. ut

For considering the influence of the noisy data, the behaviour of the quantities
κ̆n is essential. For estimating these quantities we introduce operators Πn : Z∗n → F
such that the equality QnΠnQn = Qn holds. Then the operator ΠnQn is a projector
in F . Let Fn = R(Πn). We assume that Fn ⊂W and let Wn = Fn, equipped with the
norm of W . Let In be the identity operator, considered as acting from Fn to Wn.

Theorem 4. Let conditions (11), (12), (22) hold for n≥ n0. Let the operator A : E→
W be invertible. Assume the projectors ΠnQn are uniformly bounded in F. Then

κ̆n ≤C‖In‖Fn→Wn , n≥ n0. (26)
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Proof. We have

κ̆n = ‖A−1
n Qn‖F→En = ‖A−1

n QnInΠnQn‖F→En = ‖A−1
n QnAA−1InΠnQn‖F→En ≤

≤ ‖A−1
n QnA‖E→E‖A−1‖W→E‖In‖Fn→Wn‖ΠnQn‖F→Fn .

This implies (26), since the other multipliers besides ‖In‖Fn→Wn are bounded. ut

We point out that the choice of operators Πn is quite arbitrary and is not deter-
mined by the method itself. For example, in collocation methods ΠnQn should be
an interpolation projector, but it can be interpolation by splines, or polynomial in-
terpolation or trigonometric interpolation or maybe something else, which may suit
the particular problem. The only conditions are that the result is smooth enough (it
must belong to the space W ) and ΠnQn are uniformly bounded.

Estimates for ‖In‖Fn→Wn can be found using inverse properties of approximation
subspaces (estimating elements of Fn via their norm in Wn). Splines are often useful
here, because their inverse properties (estimates of the derivatives in terms of the
splines themselves) are well known. Estimates for operators ‖A(I−Pn)‖ in condi-
tion (24) can be derived from the approximation properties of the approximation
subspaces. Often the norm ‖(I−P∗n )A

∗‖= ‖A(I−Pn)‖ is easier to estimate.

2.2 Convergence with a posteriori choice of n – the discrepancy
principle

For the discrepancy principle, in previous works the assumption (14) about uniform
boundedness of τn was required. For collocation methods this is the uniform bound-
edness of the interpolation projector onto the subspace AEn ⊂ F . If F = Cm, (14)
does not hold in general. In the next two theorems we consider two versions of the
discrepancy principle, condition (14) is assumed only in the first version.

Theorem 5. Let the assumptions of Lemma 1 be satisfied for n ≥ n0, and let un be
defined by the projection method (3). Let the convergence

κ̆n+1dist( f ,AEn)→ 0 as n→ ∞ (27)

holds. We also assume that there exists a sequence of approximations (ûn)n∈N, ûn ∈
En, satisfying (18) and (19). Let condition (14) holds. Let b > τ +1 be fixed and for
δ > 0, let n = nDP(δ ) be the first index such that

‖Aun− f δ‖F ≤ bδ . (28)

Then nDP(δ ) is finite and

‖unDP(δ )−u∗‖E → 0 as δ → 0. (29)

Proof. For any n let vn ∈ En be such that ‖ f δ −Avn‖= dist( f δ ,AEn). We have
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‖Aun− f δ‖F ≤ ‖A(un− vn)‖F + ‖Avn− f δ‖F ≤

≤ τn‖QnA(un− vn)‖+ ‖Avn− f δ‖F = τn‖Qn( f δ −Avn)‖+ ‖Avn− f δ‖F ≤

≤ (τn +1)dist( f δ ,AEn)≤ (τn +1)(δ +dist( f ,AEn)). (30)

This inequality together with (14) and relation

dist( f ,AEn)≤ ‖A(u∗− ûn)‖→ 0 as n→ ∞ (31)

imply that nDP is finite.
If for some δk → 0(k→ ∞) the discrepancy principle gives nDP(δk) ≤ N with

N ≥ 0, then the sequence unDP(δk) lies in a finite-dimensional subspace – the linear
hull of En, n = 1, . . . ,N. Since

‖AunDP(δk)− f δk‖F ≤ bδk, (32)

then AunDP(δk) → f as k→ ∞. This implies convergence unDP(δk) → u∗ as k→ ∞,
since the operator A has the bounded inverse on finite-dimensional subspaces.

Consider now the general case nDP(δ )→ ∞ as δ → 0. Let m = nDP(δ )−1≥ 0.
For n = m the inequality (28) does not hold, and (30) with (14) gives

bδ < ‖Aum− f δ‖F ≤ (τ +1)(δ +dist( f ,AEm)), (33)

therefore also
(b−1− τ)δ

τ +1
< dist( f ,AEm). (34)

The convergence (27) implies

κ̆nDPδ <
τ +1

b−1− τ
κ̆nDPdist( f ,AEnDP−1)→ 0 as nDP→ ∞. (35)

Therefore the second term in estimate (16) converges as n = nDP→∞. Convergence
of the first term there follows as in the proof of Theorem 1, using vn = ûn, n =
nDP(δ ) and assumptions (18), (19). ut

Theorem 6. Let the assumptions of Theorem 5 be satisfied without requirement (14).
Let the sequence

bn > (1+ τn)(1+ ε) (36)

be fixed with some fixed ε > 0 and n = nDP(δ ) be chosen as the first index such that

‖Aun− f δ‖F ≤ bnδ . (37)

Then nDP(δ ) is finite and the convergence (29) holds.

Proof. The proof is similar to the proof of the previous theorem. Condition (36)
gives the inequality (τn + 1)δ ≤ bnδ − ε(τn + 1)δ , and the estimate (30) can be
continued as follows:
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‖Aun− f δ‖F ≤ bnδ +(τn +1)(dist( f ,AEn)− εδ ).

Due to convergence (31) the second summand here will be negative for suffi-
ciently large n, therefore nDP(δ ) will be finite. If for some δk → 0(k → ∞) the
discrepancy principle gives nDP(δk)≤ N, the proof of convergence unDP(δk)→ u∗ as
k→∞ is the same as in the previous theorem with the exception, that the inequality
‖AunDP(δk)− f δk‖F ≤ bNδk is used instead of (32). The proof of convergence (29)
in case nDP(δ )→ ∞ as δ → 0 is the same as in the previous theorem, only in the

inequalities (33), (34), (35) the quantities b, τ and
τ +1

b−1− τ
are replaced by bm, τm

and ε−1 <
τm +1

bm−1− τm
, respectively. ut

3 The least squares method

In the least squares method (4) we use the condition

N (A)∩En = {0} (38)

instead of the requirement of the injectivity of the operator A. In [16] the following
result is proved.

Theorem 7. Let condition (38) be satisfied for all n ∈N. Then an approximation un
according to the least squares method (4) exists and the error estimate

‖un−u∗‖ ≤ inf
vn∈En
{‖u∗− vn‖E +2κn‖Au∗−Avn‖F}+2κnδ

holds. If there exists a sequence of approximations (ûn)n∈N, ûn ∈ En, satisfying (18)
and

κn‖A(u∗− ûn)‖F → 0 as n→ ∞, (39)

then we have in case of exact data convergence ‖un− u∗‖E → 0 as n→ ∞ , and in
case of noisy data with the choice of n = n(δ ) according to

n(δ )→ ∞ and κn(δ )δ → 0 as δ → 0

convergence
‖un(δ )−u∗‖E → 0 as δ → 0 . (40)

If in addition to convergences (18), (39) also κn+1‖A(u∗ − ûn)‖F → 0 as n→ ∞

holds, then convergence (40) holds also with the choice of n(δ ) by the discrepancy
principle: for fixed b > 1 choose n(δ ) as the first index such that ‖Aun− f δ‖< bδ .

The discrepancy principle fits better to the least squares method than to other projec-
tion methods in the sense that there is no need to calculate or estimate the quantities
τ , τn which may be a hard task.
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4 Application: collocation method for Volterra integral equations

We consider collocation method for Volterra integral equations. In the first two ex-
amples these equations are cordial integral equations studied in [18, 28, 29, 30, 31].
We give properties of these equations in Section 4.1 and consider the collocation
method in Section 4.2.

4.1 Cordial integral equations

Consider cordial integral equations of the first kind∫ t

0

1
t

a(t,s)φ(
s
t
)u(s)ds = f (t), 0≤ t ≤ T, (41)

where φ ∈ L1(0,1) is called the core of the cordial integral operator, and a, f are
given smooth enough functions. Define the cordial integral operators

(Vφ u)(t) =
∫ t

0

1
t

φ(
s
t
)u(s)ds, (Vφ ,au)(t) =

∫ t

0

1
t

a(t,s)φ(
s
t
)u(s)ds.

Denote ∆T = {(s, t) : t ∈ [0,T ], s ∈ [0, t]}. The following results are proven in
[28, 29, 30, 31].

Theorem 8. Let φ ∈ L1(0,1), a ∈Cm(∆T ). Then Vφ ,a ∈L (Cm[0,T ]) and

‖Vφ ,a‖Cm[0,T ] ≤C‖φ‖L1(0,1)‖a‖Cm(∆T ).

Theorem 9. Let φ ∈ L1(0,1) and let λ ∈C with Reλ > 0. Then tλ is an eigenfunc-
tion of Vφ in C[0,T ], and the corresponding eigenvalue is φ̂(λ ) =

∫ 1
0 φ(x)xλ dx. If

Reλ > m, then the eigenfunction belongs to Cm[0,T ].

Theorem 10. Let φ ∈ L1(0,1), a∈Cm(∆T ). Then the spectrum of Vφ ,a in Cm[0,T ] is
given by σm(Vφ ,a) = {0}∪{a(0,0)φ̂(k), k = 0, . . . ,m}∪{a(0,0)φ̂(λ ), Reλ > m}.

Theorem 11. Let φ ∈ L1(0,1), x(1−x)φ ′(x)∈ L1(0,1),
∫ 1

0 φ(x)dx> 0 and there ex-
ists β < 1 such that (xβ φ(x))′≥ 0 for x∈ (0,1). Assume also that a∈Cm+1(∆T ) and
a(t, t) 6= 0. Then Vφ ,a is injective in C[0,T ], Cm+1[0,T ]⊂Vφ ,a(Cm[0,T ])⊂Cm[0,T ],
and V−1

φ ,a ∈L (Cm+1[0,T ],Cm[0,T ]).

Corollary 1. Let the assumptions of Theorem 11 be satisfied and let f ∈Cm+1[0,T ]
be given. Then the equation (41) is uniquely solvable in C[0,T ] and its solution is in
Cm[0,T ].
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4.2 Polynomial collocation method for cordial integral equations,
numerical results

According to Theorem 9, functions tk,k ∈ N are eigenfunctions of the cordial inte-
gral operator Vφ , therefore the polynomial collocation method is well adapted for
these equations. We look for solutions in the form un(s) = ∑

n
j=0 c js j. In the collo-

cation method we choose the collocation points tk ∈ [0,T ], k = 0, . . . ,n and find ck,
k = 0, . . . ,n from the collocation equations

n

∑
j=0

c j

∫ tk

0

1
tk

a(tk,s)φ(
s
tk
)s jds = f (tk), k = 0, . . . ,n.

To set up the system, one has to calculate exactly or “well enough” the integrals∫ t

0

1
tk

a(tk,s)φ(
s
tk
)s jds.

For theoretical results it is convenient to use the basis {s j} for polynomials; for
practical calculations though, this results in very badly conditioned systems. So for
larger N one has to use a better basis, for example the (scaled) Chebyshev poly-
nomials Tp(t) = cos

(
parccos

( 2t
T −1

))
. In fact, it may be simpler to make first the

change of variables t = T
2 (1−cosy) and then work with trigonometric polynomials

in y instead.
In the following examples 1, 2, E = F =C[0,T ], En is the space of polynomials

of order up to n and Zn is the linear span of δ -functions with supports tk, k = 0, . . . ,n.
Let a(t,s) ≡ 1. Then Vφ : En → En and τn is simply the norm of the interpolation
projector from C to C with the interpolation nodes tk, k = 0, . . . ,n. If tk are the
Chebyshev nodes, then τn ≈ 2

π
ln(n+1)+1.

In Examples 1, 2 certain noise levels were chosen and the noise was generated
by random numbers with uniform distribution at the collocation nodes, and on nine
times denser mesh for calculating the discrepancy. We also found the optimal num-
ber nopt and the corresponding error eopt = minn∈N ‖un−u∗‖E = ‖unopt −u∗‖E . The
discrepancy principle was used for finding proper n = n(δ ). The condition (14) is
not satisfied in Examples 1,2. According to the discrepancy principle from Theo-
rem 6 we found the first n = nDP satisfying the inequality ‖Aun− f δ‖F ≤ bnδ with
bn = 1.001(1+ τn). We denote the corresponding error by eDP = ‖unDP −u∗‖. The
optimal errors and the errors obtained by using the discrepancy principle are pre-
sented in the following Tables 1, 2. In these tables also bnDP are presented.

Example 1. Consider the cordial integral equation (here φ(x) = 1√
x )

∫ t

0

u(s)ds√
st

=
1

t2 +1
, t ∈ [0,T ] (42)
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with exact solution u(s) = 1−3s2

2(s2+1)2 . For this equation κn can be estimated using

Markoff’s inequality, by Cn2. Since the right-hand side of the equation is analytic,
dist( f ,AEn) converges to zero exponentially, hence the assumptions of Theorem 6
are satisfied.

We took T = 10 and used noisy data with noise levels δ = 10−4,10−6, . . . , 10−14.
The number of collocation nodes was 10, 15, 20, . . . ,110.

δ eopt nopt eDP nDP bnDP

10−4 6 ·10−2 25 8 ·10−2 20 3.94
10−6 1.01 ·10−3 40 2.4 ·10−3 30 4.19
10−8 1.51 ·10−5 40 1.51 ·10−5 40 4.36
10−10 1.8 ·10−7 50 1.8 ·10−7 50 4.56
10−12 4.69 ·10−9 75 9.58 ·10−9 60 4.62
10−14 7.04 ·10−11 105 7.57 ·10−11 70 4.71

Table 1 Optimal errors with the corresponding nopt and errors obtained by using the discrepancy
principle with bnDP for equation (42).

Example 2. Consider the equation∫ t

0

u(s)ds√
st

= t3/2(2− t)5/2, t ∈ [0,2]. (43)

The exact solution is u(s) = 2s3/2(2− s)5/2− 5
2

s5/2(2− s)3/2. Since the integral

operator is the same as in Example 1, κn is the same. The distance dist( f ,AEn) can
be estimated by Cn−3, hence the assumptions of Theorem 6 are satisfied.

We used noisy data with noise levels δ = 10−3,10−4, . . . ,10−7. The number of
collocation nodes was 10, 20, 30, . . . ,300.

δ eopt nopt eDP nDP bnDP

10−3 1.5 ·10−1 10 1.5 ·10−1 10 3.53
10−4 5 ·10−2 40 1.1 ·10−1 30 3.94
10−5 5.24 ·10−3 20 2 ·10−2 50 4.5
10−6 6.13 ·10−4 40 5.16 ·10−3 100 4.94
10−7 9.17 ·10−5 90 5.77 ·10−3 230 5.46

Table 2 Optimal errors with the corresponding nopt and errors obtained by using the discrepancy
principle with bnDP for equation (43).
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4.3 Spline-collocation for Volterra integral equation, numerical
results

We consider a Volterra integral equation of the first kind

(Au)(t) :=
∫ t

0
K(t,s)u(s)ds = f (t), t ∈ [0,1] (44)

with the operator A ∈ L(Lp(0,1),C[0,1]), 1 ≤ p ≤ ∞. The approximation space is
En = S(−1)

k−1 (I∆ ), the space of discontinuous piecewise polynomials of order k− 1
with mesh ∆ . In the collocation method we find un from the spline space En such
that

Aun(ti, j) = f δ (ti, j), i = 1, . . . ,n, j = 1, . . . ,k

where ti, j = (i−1+c j)h ∈ [0,1], i = 1, . . . ,n, j = 1, . . . ,k are collocation nodes and
0 < c1 < .. . < ck ≤ 1 are collocation parameters whose choice is essential.

Example 3. Consider the equation

Au(t) =
∫ t

0
u(s)ds =

tq

q
, t ∈ [0,1], q ∈ {3/2,5/2} (45)

with operator A : L1(0,1)→ C[0,1]. The exact solution is u(s) = sq−1. We used
for En the space of discontinuous linear splines with uniform mesh ih, i = 0, . . . ,n,
where h = 1/n. The collocation points are ti1 = (i−1+ c)h, ti2 = ih, c ∈ (0,1). For
this problem κ̆n can be estimated using Theorem 4. Here we can take for Fn the
space of continuous linear splines and the inverse property of these splines gives

∀wn ∈ Fn, ‖w′n‖ ≤Cn‖wn‖,

hence κ̆n ≤Cn. The distance dist( f ,AEn) can be estimated by Cn−q.
It can be shown that here

τ =

{
1+ c2

2(1−c) , if c≥ 1
2 ,

1+ (1−c)2

2c if c≤ 1
2 .

The quantity τ is minimal for c = 1
2 , then τ = 1.25. In this example τn = τ holds, i.e.

τn does not depend on n. We used c = 1
2 and for satisfying the condition b > τ +1

in Theorem 5 we actually took b = 1.01+ τ = 2.26 for the discrepancy principle.
The noisy data were generated by the formula f δ (ti, j) = f (ti, j)+ δθi, j, where

δ = 10−m,m ∈ {2, . . . ,7} and θi, j are random numbers with normal distribution,
normed after being generated: maxi, j |θi, j|= 1.

We can conclude that for these model problems the discrepancy principle gave
reasonable results.

Acknowledgements The authors are supported by institutional research funding IUT20-57 of the
Estonian Ministry of Education and Research.
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δ eopt nopt eDP nDP eopt nopt eDP nDP

10−1 2.5 ·10−1 1 2.5 ·10−1 1 2.9 ·10−1 1 2.9 ·10−1 1
10−2 6.8 ·10−2 2 6.8 ·10−2 2 5.4 ·10−2 2 5.4 ·10−2 2
10−3 1.3 ·10−2 8 1.8 ·10−2 5 9 ·10−3 6 1.1 ·10−2 5
10−4 3.2 ·10−3 24 3.3 ·10−3 20 1.7 ·10−3 15 3 ·10−3 8
10−5 7.6 ·10−4 72 8.4 ·10−4 86 3.5 ·10−4 32 6.2 ·10−4 18
10−6 1.9 ·10−4 128 3.3 ·10−4 512 6.8 ·10−5 72 9.9 ·10−5 46
10−7 4.5 ·10−5 512 1.2 ·10−4 2048 1.5 ·10−5 128 1.5 ·10−5 128

Table 3 Optimal errors and errors obtained by using the discrepancy principle for equation (45);
left with q = 3/2 and right with q = 5/2.
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32. G. Vainikko and U. Hämarik. Projection methods and self-regularization in ill-posed prob-
lems. Izvestiya Vysshikh Uchebnykh Zavedenii Matematika, 10, 3-17, 1985. In Russian. Soviet
Mathematics, 29, pp. 1–20, 1985.
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