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. ABSTRACT

Regularized projection methods for solving linear ill-posed problems are considered. The
regularization parameter is chosen by the (modified) discrepancy principle. Our error
estimate has the optimal order with respect to the data errors and our estimate of dis-
cretization error is better iLian those given in earlier papers.

1. REGULARIZED PROJECTION METHODS

Consider the equation

Au=f, feR(A)#TR(A), | (1)

where A € L(H, F), H, F are Hilbert spaces. Assume that only fs € F is
- available with ||fs — f|| < 6. Let h > 0 be the discretization step and Py, Qj be
the orthoprojectorsin H, F, respectively, with P, — I » @r — I pointwise in H, F
respectively, ||[A(I—P)[| — 0, [|[(T—Qnr)A| — 0 (h — 0). The projection method
for (1) has the form Apup = Qnfs, 4y = QuAPy, up, € R(P,). We regularize
this equation using a Borel measurable function g, [0,a] = R (r > 0) with the
following properties for r > 0:

1) |lg-(MN)| < vr (0<A<a, v= const),
2) )\pll — /\gr(/\)! < 7p7'~p (0 <A < a, 0 < p< Do, Po > O, Tp = const),

3) r — g-()) is continuous and there holds -a(iéii)l < A'B(A)A = Ag-(N),
v' = const, where Br(A) =1for py = o0, B (N) = (T:)\gr()\))l/”" for pg < oo,
4) r — |1 — Ag-())| is decreasing for any A > 0. _
Let up € H and let u, be the solution of (1), nearest to ug. We find

Up,r = (I - gr(A}';Ah)AzAh)Phuo + g,.(A‘,';Ah)A’,';fs,. (2)
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assuming that ||A||?2 < a. In the special case
F=H, A=A">0, Q.=P, | (3)
we assume that ||A]| < a and use the regularized Ritz—Galerkin method

Up,yr = (I-— g,-(Ah)Ah)Phuo + 9-(An)Pr fs. (4)

Examples of regularization methods of the form (2), (4) with the corresponding
functions g.., satisfying 1)-4) are the ordinary Lavrentiev and Tikhonov methods.
(po = 1), their iterated versions of order m (py = m), explicit and implicit iteration
methods (pg = oo) (see (Plato and Vainikko, 1989, 1990; Gfrerer, 1987)).

2. RULES FOR CHOOSING r
a Let By, = B}, . = I if po = 00, By, = (I — A4 A3 g-(4n43)) "/ if py < 00. In
the case (3) define B | = (I — g,(A4n)A4)"" if po < co.

RULE 1. Let by 2 by 2 1,0 < © < 1. If || By (Apuo — Qrfo)ll < b4,
choose r = 0. Otherwise choose 0 < r < 7 ;= sup{(2q)l/‘7||(.l"- Ph)|A|q|]‘2/q’}
q>0

(JA| = (A*A)V/2) such that

| B, (Antn,r — Qufs)|| < b26, 3s €[Or, r: | Bhis(Anttn,s — Qufs)|| = 5:6. (5)

If no r <7 exists such that (5) holds, choose r = 7 or r = int(7) + 1.

Rule 2 = Rule 1, where B}, - is replaced by I.

If (3) holds, then we choose in r approximation (4) aécording to Rules 1’, 2’ which
we obtain from Rules 1, 2 by using the substitutions By, — B} ., T — (7")1/2,
Q h — P he

3. CONVERGENCE AND RATE OF CONVERGENCE

THEOREM 1. a) Let r in (2) be chosen by Rule 1. Then up, — u. (6§ — 0,
h —0). If

=4z 2l o, ue—uo = APy, |l <p (6)
with p < 2p,, then

lunr = wall < e{ /DS i1 B ap| L) G

where

O =@ ™ 0 < <1, wtpz Rrp<o,
0((‘r +log||(Z - Qu)larp/2]) [|(r - Qh)lA*Ip/ZHZ)f forp <2,
O(JItr - QuA] (X - Qw4 1) for p > 2.

T

e(Qx) =
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b) Let pg > 1/2 andr in (2) be chosen by Rule 2. Then Up,r — Us (6 — O, h — 0).
If (6) holds with p < 2py — 1, then (7)»h01_d’s.

THEOREM 2. Let (3) hold. a) Let r in (4) be chosen by Rule 1'. Then Up,p —

Us (6 — 0, k — 0). I (6) holds with p < Po, then (7) holds with the term pe(Qr)

omittgd. w4 ond .
b) Let"r"in"(4) be chosen by Rule 2'. Then up, — u. (6 — 0, h — 0). If (6)
holds with p < po — 1, then (7) holds with the term pe(Qr) omitted.

The proof of Theorem 2 can be found in (Hamarik, 1991).

4. CHOICE OF h

A reasonable choice of & in (2) is determined by the rule -
1/ wull
12 =LA + )12 - @uytar /¥ ~ 6, (®)
and in (4) by the rule ||(I — P,)4>|}/> ~ § (provided that (3) holds). Table 1
presents the values of A and u depending on po and the rule for choosing r. The

choice of h guarantees that if (6) holds (with an unknown p) then [lup,, — u,]| <
c6?/(P+1) for p < p, where the values of p are given in the last row of Table 1.

Table 1. Values of A and u in rules for choice of k

approx. (4) (provided(3)) (2)
Po 00 | Po<o0 | 1<py<oo | o0 | py<oo | 1/2<p< oo
r by Rule | 2/ 1 2! 2 1 2
A 1 —Po__ Po—1 1 2po 2po—1
Po+1 Po 2po+1 2po
M i —Bo__ 2po=1
2 2po+1 4p0
D o0 Po po—1 00 2pg 2py — 1

5. APPLICATION TO INTEGRAL EQUATIONS
Let Au(t) = [] K(t,5)u(s) ds,

1 1 al K(t )2 1 1
1 ,S
/\/l“"‘—"—"‘—”’asl1 dt ds <007 //
0 0 0 0

A: Ly[0,1] — L,[0,1]. Let R(Pr,), R(Q4,) be spline spaces of degrees k; — 1,
k2 — 1 and discretization step sizes hi, hq, respectively. Then

2

K9 s < oo

—————en e,

Bt

1T = Pu,)|APP|| = O(RPIMPl Ry (9)
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(I = Qu,)|A*P|| = O(rp ™ PR hy, | (10)

if p < 1. Hence, (8). means hrl“in{l“kl/” + h;ﬂn“z’h/"} ~ § and in § 2 the value
hle‘ may. be used instead of 7.

6. COMPARISON WITH EARLIER RESULTS
In (Plato and Vainikko, 1989, 1990), for (2) in the case (6), the error estimate

lunr — ] < C{pl/(p+1)5p/(p+1)

: . (11)
+ ol AT = B 1|1 - Quya]™ "}

was obtained and, for (4), estimate (11) was stated without the last term under
the assumption that (3) and (6) hold. Note that estimates (7) and (11) for the
regularized least squares method (the case Q, AP, = AP;) hold without the last
term and for the regularized least error method (the case Qr AP, = QrA) without
the second term. Corresponding estimate (11) for the first of these methods was
earlier given in (Groetsch et al., 1982; Groetsch, 1984; Gfrerer, 1987) and for the
second method in (King and Neubauer, 1988; Neubauer, 1988). Note also that
estimate (7) is always not worse that (11), but there are examples when

|2 = Pa)lAP|| = OEm<2y, AT = P[™ ) = o(pminte)),
e(Qn) = O(hmaX{p’Z}), “(I—- Qh)A”min{P,2} — O(hmin{p,z}).

In the case p < 1 such estimates follow from (9) and (10) in view of the example
of § 5 with k; = 1, I; > ¢/p, (2 = 1,2). It is worth noting that rule (8) with
A = p = 1 (independently from p;) was proposed for choosing h in (Plato and
Vainikko, 1990).
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